Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandra Mikhailova is active.

Publication


Featured researches published by Alexandra Mikhailova.


Stem cell reports | 2014

Small-Molecule Induction Promotes Corneal Epithelial Cell Differentiation from Human Induced Pluripotent Stem Cells

Alexandra Mikhailova; Tanja Ilmarinen; Hannu Uusitalo; Heli Skottman

Summary Human induced pluripotent stem cells (hiPSCs) offer unique opportunities for developing novel cell-based therapies and disease modeling. In this study, we developed a directed differentiation method for hiPSCs toward corneal epithelial progenitor cells capable of terminal differentiation toward mature corneal epithelial-like cells. In order to improve the efficiency and reproducibility of our method, we replicated signaling cues active during ocular surface ectoderm development with the help of two small-molecule inhibitors in combination with basic fibroblast growth factor (bFGF) in serum-free and feeder-free conditions. First, small-molecule induction downregulated the expression of pluripotency markers while upregulating several transcription factors essential for normal eye development. Second, protein expression of the corneal epithelial progenitor marker p63 was greatly enhanced, with up to 95% of cells being p63 positive after 5 weeks of differentiation. Third, corneal epithelial-like cells were obtained upon further maturation.


Stem Cell Research | 2012

Laminin-511 expression is associated with the functionality of feeder cells in human embryonic stem cell culture.

Heidi Hongisto; Sanna Vuoristo; Alexandra Mikhailova; Riitta Suuronen; Ismo Virtanen; Timo Otonkoski; Heli Skottman

Fibroblast feeder cells play an important role in supporting the derivation and long term culture of undifferentiated, pluripotent human embryonic stem cells (hESCs). The feeder cells secrete various growth factors and extracellular matrix (ECM) proteins into extracellular milieu. However, the roles of the feeder cell-secreted factors are largely unclear. Animal feeder cells and use of animal serum also make current feeder cell culture conditions unsuitable for derivation of clinical grade hESCs. We established xeno-free feeder cell lines using human serum (HS) and studied their function in hESC culture. While human foreskin fibroblast (hFF) feeder cells were clearly hESC supportive, none of the established xeno-free human dermal fibroblast (hDF) feeder cells were able to maintain undifferentiated hESC growth. The two fibroblast types were compared for their ECM protein synthesis, integrin receptor expression profiles and key growth factor secretion. We show that hESC supportive feeder cells produce laminin-511 and express laminin-binding integrins α3ß1, α6ß1 and α7ß1. These results indicate specific laminin isoforms and integrins in maintenance of hESC pluripotency in feeder-dependent cultures. In addition, several genes with a known or possible role for hESC pluripotency were differentially expressed in distinct feeder cells.


Experimental Eye Research | 2016

Human pluripotent stem cell-derived limbal epithelial stem cells on bioengineered matrices for corneal reconstruction

Alexandra Mikhailova; Tanja Ilmarinen; Anjula Ratnayake; Goran Petrovski; Hannu Uusitalo; Heli Skottman; Mehrdad Rafat

Corneal epithelium is renewed by limbal epithelial stem cells (LESCs), a type of tissue-specific stem cells located in the limbal palisades of Vogt at the corneo-scleral junction. Acute trauma or inflammatory disorders of the ocular surface can destroy these stem cells, leading to limbal stem cell deficiency (LSCD) - a painful and vision-threatening condition. Treating these disorders is often challenging and complex, especially in bilateral cases with extensive damage. Human pluripotent stem cells (hPSCs) provide new opportunities for corneal reconstruction using cell-based therapy. Here, we investigated the use of hPSC-derived LESC-like cells on bioengineered collagen matrices in serum-free conditions, aiming for clinical applications to reconstruct the corneal epithelium and partially replace the damaged stroma. Differentiation of hPSCs towards LESC-like cells was directed using small-molecule induction followed by maturation in corneal epithelium culture medium. After four to five weeks of culture, differentiated cells were seeded onto bioengineered matrices fabricated as transparent membranes of uniform thickness, using medical-grade porcine collagen type I and a hybrid cross-linking technology. The bioengineered matrices were fully transparent, with high water content and swelling capacity, and parallel lamellar microstructure. Cell proliferation of hPSC-LESCs was significantly higher on bioengineered matrices than on collagen-coated control wells after two weeks of culture, and LESC markers p63 and cytokeratin 15, along with proliferation marker Ki67 were expressed even after 30 days in culture. Overall, hPSC-LESCs retained their capacity to self-renew and proliferate, but were also able to terminally differentiate upon stimulation, as suggested by protein expression of cytokeratins 3 and 12. We propose the use of bioengineered collagen matrices as carriers for the clinically-relevant hPSC-derived LESC-like cells, as a novel tissue engineering approach for corneal reconstruction.


Scientific Reports | 2015

Comparative proteomics reveals human pluripotent stem cell-derived limbal epithelial stem cells are similar to native ocular surface epithelial cells

Alexandra Mikhailova; Antti Jylhä; Jochen Rieck; Janika Nättinen; Tanja Ilmarinen; Zoltán Veréb; Ulla Aapola; Roger Beuerman; Goran Petrovski; Hannu Uusitalo; Heli Skottman

Limbal epithelial stem cells (LESCs) are tissue-specific stem cells responsible for renewing the corneal epithelium. Acute trauma or chronic disease affecting LESCs may disrupt corneal epithelial renewal, causing vision threatening and painful ocular surface disorders, collectively referred to as LESC deficiency (LESCD). These disorders cannot be treated with traditional corneal transplantation and therefore alternative cell sources for successful cell-based therapy are needed. LESCs derived from human pluripotent stem cells (hPSCs) are a prospective source for ocular surface reconstruction, yet critical evaluation of these cells is crucial before considering clinical applications. In order to quantitatively evaluate hPSC-derived LESCs, we compared protein expression in native human corneal cells to that in hPSC-derived LESCs using isobaric tag for relative and absolute quantitation (iTRAQ) technology. We identified 860 unique proteins present in all samples, including proteins involved in cell cycling, proliferation, differentiation and apoptosis, various LESC niche components, and limbal and corneal epithelial markers. Protein expression profiles were nearly identical in LESCs derived from two different hPSC lines, indicating that the differentiation protocol is reproducible, yielding homogeneous cell populations. Their protein expression profile suggests that hPSC-derived LESCs are similar to the human ocular surface epithelial cells, and possess LESC-like characteristics.


Scientific Reports | 2018

Patient stratification in clinical glaucoma trials using the individual tear proteome

Janika Nättinen; Antti Jylhä; Ulla Aapola; Minna Parkkari; Alexandra Mikhailova; Roger W Beuerman; Hannu Uusitalo

Glaucoma patients are prone to concomitant ocular surface diseases; however, switching from preserved to preservative-free medication can often alleviate these symptoms. The objective of this study was to examine how the adverse effects and tear proteome change for glaucoma patients (n = 28) during a 12-month drug switch from preserved latanoprost (Xalatan) to preservative-free tafluprost (Taflotan). We hypothesized that patient stratification could help identify novel recovery patterns in both tear proteomics and clinical data. In order to accomplish patient stratification, we implemented sequential window acquisition of all theoretical mass spectrometry (SWATH-MS) as a tool for quantitative analysis of individual tear protein profiles. During each visit (baseline and four follow-up visits), the patients’ tears were sampled and the state of their ocular surface was evaluated clinically. Altogether 785 proteins were quantified from each tear sample using SWATH strategy and as these protein expression levels were compared between baseline and 12-month follow-up, three distinct patient groups were identified. We evaluated how these patient groups differed in their protein expression levels at baseline and discovered that the patients with increased levels of pro-inflammatory proteins and decreased levels of protective proteins benefitted most from the medication switch.


Journal of Visualized Experiments | 2018

Efficient and Scalable Directed Differentiation of Clinically Compatible Corneal Limbal Epithelial Stem Cells from Human Pluripotent Stem Cells

Heidi Hongisto; Meri Vattulainen; Tanja Ilmarinen; Alexandra Mikhailova; Heli Skottman

Corneal limbal epithelial stem cells (LESCs) are responsible for continuously renewing the corneal epithelium, and thus maintaining corneal homeostasis and visual clarity. Human pluripotent stem cell (hPSC)-derived LESCs provide a promising cell source for corneal cell replacement therapy. Undefined, xenogeneic culture and differentiation conditions cause variation in research results and impede the clinical translation of hPSC-derived therapeutics. This protocol provides a reproducible and efficient method for hPSC-LESC differentiation under xeno- and feeder cell-free conditions. Firstly, monolayer culture of undifferentiated hPSC on recombinant laminin-521 (LN-521) and defined hPSC medium serves as a foundation for robust production of high-quality starting material for differentiations. Secondly, a rapid and simple hPSC-LESC differentiation method yields LESC populations in only 24 days. This method includes a four-day surface ectodermal induction in suspension with small molecules, followed by adherent culture phase on LN-521/collagen IV combination matrix in defined corneal epithelial differentiation medium. Cryostoring and extended differentiation further purifies the cell population and enables banking of the cells in large quantities for cell therapy products. The resulting high-quality hPSC-LESCs provide a potential novel treatment strategy for corneal surface reconstruction to treat limbal stem cell deficiency (LSCD).


Clinical Proteomics | 2018

Comparison of iTRAQ and SWATH in a clinical study with multiple time points

Antti Jylhä; Janika Nättinen; Ulla Aapola; Alexandra Mikhailova; Matti Nykter; Lei Zhou; Roger W. Beuerman; Hannu Uusitalo

AbstractBackgroundAdvances in mass spectrometry have accelerated biomarker discovery in many areas of medicine. The purpose of this study was to compare two mass spectrometry (MS) methods, isobaric tags for relative and absolute quantitation (iTRAQ) and sequential window acquisition of all theoretical fragment ion spectra (SWATH), for analytical efficiency in biomarker discovery when there are multiple methodological constraints such as limited sample size and several time points for each patient to be analyzed. MethodsA total of 140 tear samples were collected from 28 glaucoma patients at 5 time points in a glaucoma drug switch study. Samples were analyzed with iTRAQ and SWATH methods using NanoLC-MSTOF mass spectrometry.ResultsWe discovered that even though iTRAQ is faster than SWATH with respect to analysis time per sample, it loses in sensitivity, reliability and robustness. While SWATH analysis yielded complete data of 456 proteins in all samples, with iTRAQ we were able to quantify 477 proteins in total but on average only 125 proteins were quantified in a sample. 283 proteins were common in the datasets produced by the two methods. Repeatability of the methods was assessed by calculating percent relative standard deviation (% RSD) between replicate MS analyses: SWATH was more repeatable (56% of proteins < 20% RSD), compared to iTRAQ (43% of proteins < 20% RSD). Despite the overall benefits of SWATH, both methods showed less than 1 log fold change difference in the expression of 74% common proteins. In addition, comparison to MS/MS peptide results using 8 isotopically labeled peptide standards, SWATH and iTRAQ showed similar results in terms of accuracy. Moreover, both methods detected similar trends in a longitudinal analysis of protein expression of two known tear biomarkers.ConclusionsOverall, we conclude that SWATH should be preferred for biomarker discovery studies when analyzing limited volumes of clinical samples collected at multiple time points.Trial RegisterationThe study was approved by the Ethics Committee at Tampere University Hospital and was registered in EU clinical trials register (EudraCT Number: 2010-021039-14).


Stem Cell Research & Therapy | 2017

Xeno- and feeder-free differentiation of human pluripotent stem cells to two distinct ocular epithelial cell types using simple modifications of one method

Heidi Hongisto; Tanja Ilmarinen; Meri Vattulainen; Alexandra Mikhailova; Heli Skottman


Stem Cell Discovery | 2012

Low level of activin A secreted by fibroblast feeder cells accelerates early stage differentiation of retinal pigment epithelial cells from human pluripotent stem cells

Heidi Hongisto; Alexandra Mikhailova; Hanna Hiidenmaa; Tanja Ilmarinen; Heli Skottman


Investigative Ophthalmology & Visual Science | 2017

Visual acuity, health-related quality of life, and their correlation in a nationwide epidemiological study of adult population in Finland

Alexandra Mikhailova; Matti Ojamo; Mika Gissler; Seppo Koskinen; Harri Rissanen; Päivi Sainio; Hannu Uusitalo

Collaboration


Dive into the Alexandra Mikhailova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Riitta Suuronen

Tampere University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge