Alexandra Parbery-Clark
Northwestern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexandra Parbery-Clark.
Hearing Research | 2010
Dana L. Strait; Nina Kraus; Alexandra Parbery-Clark; Richard Ashley
A growing body of research suggests that cognitive functions, such as attention and memory, drive perception by tuning sensory mechanisms to relevant acoustic features. Long-term musical experience also modulates lower-level auditory function, although the mechanisms by which this occurs remain uncertain. In order to tease apart the mechanisms that drive perceptual enhancements in musicians, we posed the question: do well-developed cognitive abilities fine-tune auditory perception in a top-down fashion? We administered a standardized battery of perceptual and cognitive tests to adult musicians and non-musicians, including tasks either more or less susceptible to cognitive control (e.g., backward versus simultaneous masking) and more or less dependent on auditory or visual processing (e.g., auditory versus visual attention). Outcomes indicate lower perceptual thresholds in musicians specifically for auditory tasks that relate with cognitive abilities, such as backward masking and auditory attention. These enhancements were observed in the absence of group differences for the simultaneous masking and visual attention tasks. Our results suggest that long-term musical practice strengthens cognitive functions and that these functions benefit auditory skills. Musical training bolsters higher-level mechanisms that, when impaired, relate to language and literacy deficits. Thus, musical training may serve to lessen the impact of these deficits by strengthening the corticofugal system for hearing.
The Journal of Neuroscience | 2012
Samira Anderson; Alexandra Parbery-Clark; Travis White-Schwoch; Nina Kraus
Older adults frequently report they can hear what is said but cannot understand the meaning, especially in noise. This difficulty may arise from the inability to process rapidly changing elements of speech. Aging is accompanied by a general slowing of neural processing and decreased neural inhibition, both of which likely interfere with temporal processing in auditory and other sensory domains. Age-related reductions in inhibitory neurotransmitter levels and delayed neural recovery can contribute to decreases in the temporal precision of the auditory system. Decreased precision may lead to neural timing delays, reductions in neural response magnitude, and a disadvantage in processing the rapid acoustic changes in speech. The auditory brainstem response (ABR), a scalp-recorded electrical potential, is known for its ability to capture precise neural synchrony within subcortical auditory nuclei; therefore, we hypothesized that a loss of temporal precision results in subcortical timing delays and decreases in response consistency and magnitude. To assess this hypothesis, we recorded ABRs to the speech syllable /da/ in normal hearing younger (18–30 years old) and older (60–67 years old) adult humans. Older adults had delayed ABRs, especially in response to the rapidly changing formant transition, and greater response variability. We also found that older adults had decreased phase locking and smaller response magnitudes than younger adults. Together, our results support the theory that older adults have a loss of temporal precision in the subcortical encoding of sound, which may account, at least in part, for their difficulties with speech perception.
PLOS ONE | 2011
Alexandra Parbery-Clark; Dana L. Strait; Samira Anderson; Emily Hittner; Nina Kraus
Much of our daily communication occurs in the presence of background noise, compromising our ability to hear. While understanding speech in noise is a challenge for everyone, it becomes increasingly difficult as we age. Although aging is generally accompanied by hearing loss, this perceptual decline cannot fully account for the difficulties experienced by older adults for hearing in noise. Decreased cognitive skills concurrent with reduced perceptual acuity are thought to contribute to the difficulty older adults experience understanding speech in noise. Given that musical experience positively impacts speech perception in noise in young adults (ages 18–30), we asked whether musical experience benefits an older cohort of musicians (ages 45–65), potentially offsetting the age-related decline in speech-in-noise perceptual abilities and associated cognitive function (i.e., working memory). Consistent with performance in young adults, older musicians demonstrated enhanced speech-in-noise perception relative to nonmusicians along with greater auditory, but not visual, working memory capacity. By demonstrating that speech-in-noise perception and related cognitive function are enhanced in older musicians, our results imply that musical training may reduce the impact of age-related auditory decline.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Samira Anderson; Travis White-Schwoch; Alexandra Parbery-Clark; Nina Kraus
Neural slowing is commonly noted in older adults, with consequences for sensory, motor, and cognitive domains. One of the deleterious effects of neural slowing is impairment of temporal resolution; older adults, therefore, have reduced ability to process the rapid events that characterize speech, especially in noisy environments. Although hearing aids provide increased audibility, they cannot compensate for deficits in auditory temporal processing. Auditory training may provide a strategy to address these deficits. To that end, we evaluated the effects of auditory-based cognitive training on the temporal precision of subcortical processing of speech in noise. After training, older adults exhibited faster neural timing and experienced gains in memory, speed of processing, and speech-in-noise perception, whereas a matched control group showed no changes. Training was also associated with decreased variability of brainstem response peaks, suggesting a decrease in temporal jitter in response to a speech signal. These results demonstrate that auditory-based cognitive training can partially restore age-related deficits in temporal processing in the brain; this plasticity in turn promotes better cognitive and perceptual skills.
Annals of the New York Academy of Sciences | 2009
Nina Kraus; Erika Skoe; Alexandra Parbery-Clark; Richard Ashley
Speech and music are highly complex signals that have many shared acoustic features. Pitch, Timbre, and Timing can be used as overarching perceptual categories for describing these shared properties. The acoustic cues contributing to these percepts also have distinct subcortical representations which can be selectively enhanced or degraded in different populations. Musically trained subjects are found to have enhanced subcortical representations of pitch, timbre, and timing. The effects of musical experience on subcortical auditory processing are pervasive and extend beyond music to the domains of language and emotion. The sensory malleability of the neural encoding of pitch, timbre, and timing can be affected by lifelong experience and short‐term training. This conceptual framework and supporting data can be applied to consider sensory learning of speech and music through a hearing aid or cochlear implant.
Neurobiology of Aging | 2012
Alexandra Parbery-Clark; Samira Anderson; Emily Hittner; Nina Kraus
Aging disrupts neural timing, reducing the nervous systems ability to precisely encode sound. Given that the neural representation of temporal features is strengthened with musical training in young adults, can musical training offset the negative impact of aging on neural processing? By comparing auditory brainstem timing in younger and older musicians and nonmusicians to a consonant-vowel speech sound /da/. we document a musicians resilience to age-related delays in neural timing.
Hearing Research | 2013
Samira Anderson; Travis White-Schwoch; Alexandra Parbery-Clark; Nina Kraus
Understanding speech in noise is one of the most complex activities encountered in everyday life, relying on peripheral hearing, central auditory processing, and cognition. These abilities decline with age, and so older adults are often frustrated by a reduced ability to communicate effectively in noisy environments. Many studies have examined these factors independently; in the last decade, however, the idea of an auditory-cognitive system has emerged, recognizing the need to consider the processing of complex sounds in the context of dynamic neural circuits. Here, we used structural equation modeling to evaluate the interacting contributions of peripheral hearing, central processing, cognitive ability, and life experiences to understanding speech in noise. We recruited 120 older adults (ages 55-79) and evaluated their peripheral hearing status, cognitive skills, and central processing. We also collected demographic measures of life experiences, such as physical activity, intellectual engagement, and musical training. In our model, central processing and cognitive function predicted a significant proportion of variance in the ability to understand speech in noise. To a lesser extent, life experience predicted hearing-in-noise ability through modulation of brainstem function. Peripheral hearing levels did not significantly contribute to the model. Previous musical experience modulated the relative contributions of cognitive ability and lifestyle factors to hearing in noise. Our models demonstrate the complex interactions required to hear in noise and the importance of targeting cognitive function, lifestyle, and central auditory processing in the management of individuals who are having difficulty hearing in noise.
Ear and Hearing | 2011
Samira Anderson; Alexandra Parbery-Clark; Han-Gyol Yi; Nina Kraus
Objective: We investigated a neural basis of speech-in-noise perception in older adults. Hearing loss, the third most common chronic condition in older adults, is most often manifested by difficulty understanding speech in background noise. This trouble with understanding speech in noise, which occurs even in individuals who have normal-hearing thresholds, may arise, in part, from age-related declines in central auditory processing of the temporal and spectral components of speech. We hypothesized that older adults with poorer speech-in-noise (SIN) perception demonstrate impairments in the subcortical representation of speech. Design: In all participants (28 adults, age 60-73 yr), average hearing thresholds calculated from 500 to 4000 Hz were ≤25 dB HL. The participants were evaluated behaviorally with the Hearing in Noise Test (HINT) and neurophysiologically using speech-evoked auditory brainstem responses recorded in quiet and in background noise. The participants were divided based on their HINT scores into top and bottom performing groups that were matched for audiometric thresholds and intelligent quotient. We compared brainstem responses in the two groups, specifically, the average spectral magnitudes of the neural response and the degree to which background noise affected response morphology. Results: In the quiet condition, the bottom SIN group had reduced neural representation of the fundamental frequency of the speech stimulus and an overall reduction in response magnitude. In the noise condition, the bottom SIN group demonstrated greater disruption in noise, reflecting reduction in neural synchrony. The role of brainstem timing is particularly evident in the strong relationship between SIN perception and quiet-to-noise response correlations. All physiologic measures correlated with SIN perception. Conclusion: Adults in the bottom SIN group differed from the audiometrically matched top SIN group in how speech was neurally encoded. The strength of subcortical encoding of the fundamental frequency appears to be a factor in successful speech-in-noise perception in older adults. Given the limitations of amplification, our results suggest the need for inclusion of auditory training to strengthen central auditory processing in older adults with SIN perception difficulties.
Annals of the New York Academy of Sciences | 2012
Nina Kraus; Dana L. Strait; Alexandra Parbery-Clark
Musicians benefit from real‐life advantages, such as a greater ability to hear speech in noise and to remember sounds, although the biological mechanisms driving such advantages remain undetermined. Furthermore, the extent to which these advantages are a consequence of musical training or innate characteristics that predispose a given individual to pursue music training is often debated. Here, we examine biological underpinnings of musicians’ auditory advantages and the mediating role of auditory working memory. Results from our laboratory are presented within a framework that emphasizes auditory working memory as a major factor in the neural processing of sound. Within this framework, we provide evidence for music training as a contributing source of these abilities.
Cerebral Cortex | 2014
Dana L. Strait; Samantha O'Connell; Alexandra Parbery-Clark; Nina Kraus
The perception and neural representation of acoustically similar speech sounds underlie language development. Music training hones the perception of minute acoustic differences that distinguish sounds; this training may generalize to speech processing given that adult musicians have enhanced neural differentiation of similar speech syllables compared with nonmusicians. Here, we asked whether this neural advantage in musicians is present early in life by assessing musically trained and untrained children as young as age 3. We assessed auditory brainstem responses to the speech syllables /ba/ and /ga/ as well as auditory and visual cognitive abilities in musicians and nonmusicians across 3 developmental time-points: preschoolers, school-aged children, and adults. Cross-phase analyses objectively measured the degree to which subcortical responses differed to these speech syllables in musicians and nonmusicians for each age group. Results reveal that musicians exhibit enhanced neural differentiation of stop consonants early in life and with as little as a few years of training. Furthermore, the extent of subcortical stop consonant distinction correlates with auditory-specific cognitive abilities (i.e., auditory working memory and attention). Results are interpreted according to a corticofugal framework for auditory learning in which subcortical processing enhancements are engendered by strengthened cognitive control over auditory function in musicians.