Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandra R. Fernandes is active.

Publication


Featured researches published by Alexandra R. Fernandes.


Nucleic Acids Research | 2006

The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae

Miguel C. Teixeira; Pedro T. Monteiro; Pooja Jain; Sandra Tenreiro; Alexandra R. Fernandes; Nuno P. Mira; Marta Alenquer; Ana T. Freitas; Arlindo L. Oliveira; Isabel Sá-Correia

We present the YEAst Search for Transcriptional Regulators And Consensus Tracking (YEASTRACT; ) database, a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. This database is a repository of 12 346 regulatory associations between transcription factors and target genes, based on experimental evidence which was spread throughout 861 bibliographic references. It also includes 257 specific DNA-binding sites for more than a hundred characterized transcription factors. Further information about each yeast gene included in the database was obtained from Saccharomyces Genome Database (SGD), Regulatory Sequences Analysis Tools and Gene Ontology (GO) Consortium. Computational tools are also provided to facilitate the exploitation of the gathered data when solving a number of biological questions as exemplified in the Tutorial also available on the system. YEASTRACT allows the identification of documented or potential transcription regulators of a given gene and of documented or potential regulons for each transcription factor. It also renders possible the comparison between DNA motifs, such as those found to be over-represented in the promoter regions of co-regulated genes, and the transcription factor-binding sites described in the literature. The system also provides an useful mechanism for grouping a list of genes (for instance a set of genes with similar expression profiles as revealed by microarray analysis) based on their regulatory associations with known transcription factors.


Journal of Biological Chemistry | 1999

A copper-sensing transcription factor regulates iron uptake genes in Schizosaccharomyces pombe.

Simon Labbé; Maria Marjorette O. Peña; Alexandra R. Fernandes; Dennis J. Thiele

Copper and iron serve essential functions as catalytic co-factors in a wide variety of critical cellular enzymes. Studies in yeast have demonstrated an absolute dependence upon copper acquisition for proper assembly and function of the iron transport machinery. We have cloned genes for a high affinity copper transporter (Ctr4) and copper-sensing transcription factor (Cuf1) fromSchizosaccharomyces pombe. Interestingly, the primary structure of Ctr4 and a putative human high affinity copper transport protein, hCtr1, suggests that they are derived from a fusion of the functionally redundant but structurally distinct Ctr1 and Ctr3 copper transporters from Saccharomyces cerevisiae. Furthermore, although Cuf1 activates ctr4 + gene expression under copper starvation conditions, under these same conditions Cuf1 directly represses expression of genes encoding components of the iron transport machinery. These studies have identified an evolutionary step in which copper transport modules have been fused, and describe a mechanism by which a copper-sensing factor directly represses expression of the iron uptake genes under conditions in which the essential copper co-factor is scarce.


Molecules | 2015

Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift towards the Use of Nanomedicine’s Tool Box

Pedro Martins; João Jesus; Sofia Santos; Luís R. Raposo; Catarina Roma-Rodrigues; Pedro V. Baptista; Alexandra R. Fernandes

The majority of heterocycle compounds and typically common heterocycle fragments present in most pharmaceuticals currently marketed, alongside with their intrinsic versatility and unique physicochemical properties, have poised them as true cornerstones of medicinal chemistry. Apart from the already marketed drugs, there are many other being investigated for their promising activity against several malignancies. In particular, anticancer research has been capitalizing on the intrinsic versatility and dynamic core scaffold of these compounds. Nevertheless, as for any other promising anticancer drugs, heterocyclic compounds do not come without shortcomings. In this review, we provide for a concise overview of heterocyclic active compounds and families and their main applications in medicine. We shall focus on those suitable for cancer therapy while simultaneously addressing main biochemical modes of action, biological targets, structure-activity relationships as well as intrinsic limitation issues in the use of these compounds. Finally, considering the advent of nanotechnology for effective selective targeting of drugs, we shall discuss fundamental aspects and considerations on nanovectorization of such compounds that may improve pharmacokinetic/pharmacodynamic properties of heterocycles.


BioMed Research International | 2014

Exosome in Tumour Microenvironment: Overview of the Crosstalk between Normal and Cancer Cells

Catarina Roma-Rodrigues; Alexandra R. Fernandes; Pedro V. Baptista

Cancer development is a multistep process in which exosomes play important roles. Exosomes are small vesicles formed in vesicular bodies in the endosomal network. The major role of exosomes seems to be the transport of bioactive molecules between cells. Depending on the cell of origin, exosomes are implicated in the regulation of several cellular events, with phenotypic consequences in recipient cells. Cancer derived exosomes (CCEs) are important players in the formation of the tumour microenvironment by (i) enabling the escape of tumour cells to immunological system and help initiating the inflammatory response; (ii) acting in the differentiation of fibroblasts and mesenchymal cells into myofibroblasts; (iii) triggering the angiogenic process; and (iv) enhancing the metastatic evolution of the tumour by promoting epithelial to mesenchymal transformation of tumour cells and by preparing the tumour niche in the new anatomical location. Since the finding that exosomes content resembles that of the cell of origin, they may be regarded as suitable biomarkers for cancer diagnosis, allowing for diagnosis and prognosis via a minimal invasive procedure. Exosome involvement in cancer may open new avenues regarding therapeutics, such as vectors for targeted drug delivery.


Nanotoxicology | 2014

Gold-nanobeacons for gene therapy: evaluation of genotoxicity, cell toxicity and proteome profiling analysis.

João Conde; Miguel Larguinho; Ana Cordeiro; Luís R. Raposo; Pedro M. Costa; Susana Santos; Mário S. Diniz; Alexandra R. Fernandes; Pedro V. Baptista

Abstract Antisense therapy is a powerful tool for post-transcriptional gene silencing suitable for down-regulating target genes associated to disease. Gold nanoparticles have been described as effective intracellular delivery vehicles for antisense oligonucleotides providing increased protection against nucleases and targeting capability via simple surface modification. We constructed an antisense gold-nanobeacon consisting of a stem-looped oligonucleotide double-labelled with 3′-Cy3 and 5′-Thiol-C6 and tested for the effective blocking of gene expression in colorectal cancer cells. Due to the beacon conformation, gene silencing was directly detected as fluorescence increases with hybridisation to target, which can be used to assess the level of silencing. Moreover, this system was extensively evaluated for the genotoxic, cytotoxic and proteomic effects of gold-nanobeacon exposure to cancer cells. The exposure was evaluated by two-dimensional protein electrophoresis followed by mass spectrometry to perform a proteomic profile and 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay, glutathione-S-transferase assay, micronucleus test and comet assay to assess the genotoxicity. This integrated toxicology evaluation showed that the proposed nanotheranostics strategy does not exhibit significant toxicity, which is extremely relevant when translating into in vivo systems.


Applied and Environmental Microbiology | 2006

The SPI1 Gene, Encoding a Glycosylphosphatidylinositol-Anchored Cell Wall Protein, Plays a Prominent Role in the Development of Yeast Resistance to Lipophilic Weak-Acid Food Preservatives

Tânia Simões; Nuno P. Mira; Alexandra R. Fernandes; Isabel Sá-Correia

ABSTRACT The Saccharomyces cerevisiae SPI1 gene encodes a member of the glycosylphosphatidylinositol-anchored cell wall protein family. In this work we show results indicating that SPI1 expression protects the yeast cell from damage caused by weak acids used as food preservatives. This is documented by a less extended period of adaptation to growth in their presence and by a less inhibited specific growth rate for a parental strain compared with a mutant with SPI1 deleted. Maximal protection exerted by Spi1p against equivalent concentrations of the various weak acids tested was registered for the more lipophilic acids (octanoic acid, followed by benzoic acid) and was minimal for acetic acid. Weak-acid adaptation was found to involve the rapid activation of SPI1 transcription, which is dependent on the presence of the Msn2p transcription factor. Activation of SPI1 transcription upon acetic acid stress also requires Haa1p, whereas this recently described transcription factor has a negligible role in the adaptive response to benzoic acid. The expression of SPI1 was found to play a prominent role in the development of yeast resistance to 1,3-β-glucanase in benzoic acid-stressed cells, while its involvement in acetic acid-induced resistance to the cell wall-lytic enzyme is slighter. The results are consistent with the notion that Spi1p expression upon weak-acid stress leads to cell wall remodeling, especially for the more lipophilic acids, decreasing cell wall porosity. Decreased cell wall porosity, in turn, reduces access to the plasma membrane, reducing membrane damage, intracellular acidification, and viability loss.


Dalton Transactions | 2012

Cobalt complexes bearing scorpionate ligands: synthesis, characterization, cytotoxicity and DNA cleavage

Telma F. S. Silva; Luísa Margarida D. R. S. Martins; M. Fátima C. Guedes da Silva; Alexandra R. Fernandes; Ana Paula Silva; Pedro M. Borralho; Susana Santos; Cecília M. P. Rodrigues; Armando J. L. Pombeiro

A number of novel, water-stable redox-active cobalt complexes of the C-functionalized tripodal ligands tris(pyrazolyl)methane XC(pz)(3) (X = HOCH(2), CH(2)OCH(2)Py or CH(2)OSO(2)Me) are reported along with their effects on DNA. The compounds were isolated as air-stable solids and fully characterized by IR and FIR spectroscopies, ESI-MS(+/-), cyclic voltammetry, controlled potential electrolysis, elemental analysis and, in a number of cases, also by single-crystal X-ray diffraction. They showed moderate cytotoxicity in vitro towards HCT116 colorectal carcinoma and HepG2 hepatocellular carcinoma human cancer cell lines. This viability loss is correlated with an increase of tumour cell lines apoptosis. Reactivity studies with biomolecules, such as reducing agents, H(2)O(2), plasmid DNA and UV-visible titrations were also performed to provide tentative insights into the mode of action of the complexes. Incubation of Co(II) complexes with pDNA induced double strand breaks, without requiring the presence of any activator. This pDNA cleavage appears to be mediated by O-centred radical species.


Fems Yeast Research | 2009

The RIM101 pathway has a role in Saccharomyces cerevisiae adaptive response and resistance to propionic acid and other weak acids

Nuno P. Mira; Artur B. Lourenço; Alexandra R. Fernandes; Jörg D. Becker; Isabel Sá-Correia

The physiological function of the Saccharomyces cerevisiae RIM101 signaling pathway is extended in this study beyond alkaline pH-induced responses. The transcription factor Rim101p is demonstrated to be required for maximal tolerance to weak acid-induced stress, at pH 4.0, but does not exert protection against low pH itself (range 4.5-2.5), when a strong acid is used as the acidulant. The Rim101p-dependent alterations of the yeast transcriptome following exposure to propionic acid stress (at pH 4.0) include genes of the previously described Rim101p regulon but also new target genes, in particular KNH1, involved in cell wall beta-1,6-glucan synthesis and the uncharacterized ORF YIL029c, both required for maximal propionic acid resistance. Clustering of the genes that provide resistance to propionic acid reveals the enrichment of those involved in protein catabolism through the multivesicular body pathway and in the homeostasis of internal pH and vacuolar function. The analysis of the network of interactions established among all the identified propionic acid resistance determinants shows an enrichment of interactions around the RIM101 gene and highlights the role of proteins involved in Rim101p proteolytic processing. RIM101 expression is shown to be required to counteract propionic acid-induced cytosolic acidification and for proper vacuolar acidification and cell wall structure, these having positive implications for a robust adaptive response and resistance to stress promoted by this food preservative.


Applied and Environmental Microbiology | 2003

Adaptation of Saccharomyces cerevisiae to the Herbicide 2,4-Dichlorophenoxyacetic Acid, Mediated by Msn2p- and Msn4p-Regulated Genes: Important Role of SPI1

Tânia Simões; Miguel C. Teixeira; Alexandra R. Fernandes; Isabel Sá-Correia

ABSTRACT The possible roles of 13 Msn2p- and Msn4p-regulated genes in the adaptation of Saccharomyces cerevisiae to the herbicide 2,4-d-dichlorophenoxyacetic acid (2,4-D) were examined. Single deletion of genes involved in defense against oxidizing agents (CTT1, GRX1, and GRX2/TTR1) or encoding chaperones of the HSP70 family (SSA1, SSA4, and SSE2) showed a slight effect. A more significant role was observed for the heat shock genes HSP78, HSP26, HSP104, HSP12, and HSP42, most of which encode molecular chaperones. However, the SPI1 gene, encoding a member of the glycosylphosphatidylinositol-anchored cell wall protein family, emerged as the major determinant of 2,4-D resistance. SPI1 expression reduced the loss of viability of an unadapted yeast population suddenly exposed to the herbicide, allowing earlier growth resumption. Significantly, yeast adaptation to 2,4-D involves the rapid and transient Msn2p- and Msn4p-mediated activation (fivefold) of SPI1 transcription. SPI1 mRNA levels were reduced to values slightly above those in unstressed cells when the adapted population started duplication in the presence of 2,4-D. Since SPI1 deletion leads to the higher β-1,3-glucanase sensitivity of 2,4-D-stressed cells, it was hypothesized that adaptation may involve an Spi1p-mediated increase in the diffusional restriction of the liposoluble acid form of the herbicide across the cell envelope. Such a cell response would avoid a futile cycle due to acid reentry into the cell counteracting the active export of the anionic form, presumably through an inducible plasma membrane transporter(s). Consistent with this concept, the concentration of 14C-labeled 2,4-D in 2,4-D-energized adapted Δspi1 mutant cells and the consequent intracellular acidification are higher than in wild-type cells.


Leukemia & Lymphoma | 2011

Development of imatinib and dasatinib resistance: dynamics of expression of drug transporters ABCB1, ABCC1, ABCG2, MVP, and SLC22A1

Marta Gromicho; Joana Dinis; Marta Magalhães; Alexandra R. Fernandes; Purificação Tavares; A. Laires; José Rueff; António Rodrigues

About 20% of patients with chronic myeloid leukemia (CML) do not respond to treatment with imatinib either initially or because of acquired resistance. To study the development of CML drug resistance, an in vitro experimental system comprising cell lines with different resistance levels was established by exposing K562 cells to increasing concentrations of imatinib and dasatinib anticancer agents. The mRNA levels of BCR– ABL1 and of genes involved in drug transport or redistribution (ABCB1, ABCC1, ABCC3, ABCG2, MVP, and SLC22A1) were measured and the ABL1 kinase domain sequenced. Results excluded BCR– ABL1 overexpression and mutations as relevant resistance mechanisms. Most studied transporters were overexpressed in the majority of resistant cell lines. Their expression pattern was dynamic: varying with resistance level and chronic drug exposure. Studied efflux transporters may have an important role at the initial stages of resistance, but after prolonged exposure and for higher doses of drugs other mechanisms might take place.

Collaboration


Dive into the Alexandra R. Fernandes's collaboration.

Top Co-Authors

Avatar

Pedro V. Baptista

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabel Sá-Correia

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luís R. Raposo

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raquel Vinhas

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joana Silva

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge