Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandra Rosa is active.

Publication


Featured researches published by Alexandra Rosa.


American Journal of Human Genetics | 2004

Phylogeography of Y-Chromosome Haplogroup I Reveals Distinct Domains of Prehistoric Gene Flow in Europe

Siiri Rootsi; Toomas Kivisild; Giorgia Benuzzi; Hela Help; Marina Bermisheva; Ildus Kutuev; Lovorka Barać; Marijana Peričić; Oleg Balanovsky; Andrey Pshenichnov; Daniel Dion; Monica Grobei; Vincenza Battaglia; Alessandro Achilli; Nadia Al-Zahery; Jüri Parik; Roy King; Cengiz Cinnioglu; E. K. Khusnutdinova; Pavao Rudan; Elena Balanovska; Wolfgang Scheffrahn; Maya Simonescu; António Brehm; Rita Gonçalves; Alexandra Rosa; Jean-Paul Moisan; Andre Chaventre; Vladimír Ferák; Sandor Füredi

To investigate which aspects of contemporary human Y-chromosome variation in Europe are characteristic of primary colonization, late-glacial expansions from refuge areas, Neolithic dispersals, or more recent events of gene flow, we have analyzed, in detail, haplogroup I (Hg I), the only major clade of the Y phylogeny that is widespread over Europe but virtually absent elsewhere. The analysis of 1,104 Hg I Y chromosomes, which were identified in the survey of 7,574 males from 60 population samples, revealed several subclades with distinct geographic distributions. Subclade I1a accounts for most of Hg I in Scandinavia, with a rapidly decreasing frequency toward both the East European Plain and the Atlantic fringe, but microsatellite diversity reveals that France could be the source region of the early spread of both I1a and the less common I1c. Also, I1b*, which extends from the eastern Adriatic to eastern Europe and declines noticeably toward the southern Balkans and abruptly toward the periphery of northern Italy, probably diffused after the Last Glacial Maximum from a homeland in eastern Europe or the Balkans. In contrast, I1b2 most likely arose in southern France/Iberia. Similarly to the other subclades, it underwent a postglacial expansion and marked the human colonization of Sardinia approximately 9,000 years ago.


American Journal of Human Genetics | 2004

Ethiopian Mitochondrial DNA Heritage: Tracking Gene Flow Across and Around the Gate of Tears

Toomas Kivisild; Maere Reidla; Ene Metspalu; Alexandra Rosa; António Brehm; Erwan Pennarun; Jüri Parik; Tarekegn Geberhiwot; Esien Usanga; Richard Villems

Approximately 10 miles separate the Horn of Africa from the Arabian Peninsula at Bab-el-Mandeb (the Gate of Tears). Both historic and archaeological evidence indicate tight cultural connections, over millennia, between these two regions. High-resolution phylogenetic analysis of 270 Ethiopian and 115 Yemeni mitochondrial DNAs was performed in a worldwide context, to explore gene flow across the Red and Arabian Seas. Nine distinct subclades, including three newly defined ones, were found to characterize entirely the variation of Ethiopian and Yemeni L3 lineages. Both Ethiopians and Yemenis contain an almost-equal proportion of Eurasian-specific M and N and African-specific lineages and therefore cluster together in a multidimensional scaling plot between Near Eastern and sub-Saharan African populations. Phylogeographic identification of potential founder haplotypes revealed that approximately one-half of haplogroup L0-L5 lineages in Yemenis have close or matching counterparts in southeastern Africans, compared with a minor share in Ethiopians. Newly defined clade L6, the most frequent haplogroup in Yemenis, showed no close matches among 3,000 African samples. These results highlight the complexity of Ethiopian and Yemeni genetic heritage and are consistent with the introduction of maternal lineages into the South Arabian gene pool from different source populations of East Africa. A high proportion of Ethiopian lineages, significantly more abundant in the northeast of that country, trace their western Eurasian origin in haplogroup N through assorted gene flow at different times and involving different source populations.


Annals of Human Genetics | 2004

MtDNA Profile of West Africa Guineans: Towards a Better Understanding of the Senegambia Region

Alexandra Rosa; António Brehm; Toomas Kivisild; Ene Metspalu; Richard Villems

The matrilineal genetic composition of 372 samples from the Republic of Guiné‐Bissau (West African coast) was studied using RFLPs and partial sequencing of the mtDNA control and coding region. The majority of the mtDNA lineages of Guineans (94%) belong to West African specific sub‐clusters of L0‐L3 haplogroups. A new L3 sub‐cluster (L3h) that is found in both eastern and western Africa is present at moderately low frequencies in Guinean populations. A non‐random distribution of haplogroups U5 in the Fula group, the U6 among the “Brame” linguistic family and M1 in the Balanta‐Djola group, suggests a correlation between the genetic and linguistic affiliation of Guinean populations. The presence of M1 in Balanta populations supports the earlier suggestion of their Sudanese origin. Haplogroups U5 and U6, on the other hand, were found to be restricted to populations that are thought to represent the descendants of a southern expansion of Berbers. Particular haplotypes, found almost exclusively in East‐African populations, were found in some ethnic groups with an oral tradition claiming Sudanese origin.


Annals of Human Genetics | 2005

Y-chromosome Lineages from Portugal, Madeira and Açores Record Elements of Sephardim and Berber Ancestry

Rita Gonçalves; Ana Isabel Freitas; Marta Branco; Alexandra Rosa; Ana Teresa Fernandes; Peter A. Underhill; Toomas Kivisild; António Brehm

A total of 553 Y‐chromosomes were analyzed from mainland Portugal and the North Atlantic Archipelagos of Açores and Madeira, in order to characterize the genetic composition of their male gene pool. A large majority (78–83% of each population) of the male lineages could be classified as belonging to three basic Y chromosomal haplogroups, R1b, J, and E3b. While R1b, accounting for more than half of the lineages in any of the Portuguese sub‐populations, is a characteristic marker of many different West European populations, haplogroups J and E3b consist of lineages that are typical of the circum‐Mediterranean region or even East Africa. The highly diverse haplogroup E3b in Portuguese likely combines sub‐clades of distinct origins. The present composition of the Y chromosomes in Portugal in this haplogroup likely reflects a pre‐Arab component shared with North African populations or testifies, at least in part, to the influence of Sephardic Jews. In contrast to the marginally low sub‐Saharan African Y chromosome component in Portuguese, such lineages have been detected at a moderately high frequency in our previous survey of mtDNA from the same samples, indicating the presence of sex‐related gene flow, most likely mediated by the Atlantic slave trade.


BMC Evolutionary Biology | 2007

Y-chromosomal diversity in the population of Guinea-Bissau: a multiethnic perspective

Alexandra Rosa; Carolina Ornelas; Mark A. Jobling; António Brehm; Richard Villems

BackgroundThe geographic and ethnolinguistic differentiation of many African Y-chromosomal lineages provides an opportunity to evaluate human migration episodes and admixture processes, in a pan-continental context. The analysis of the paternal genetic structure of Equatorial West Africans carried out to date leaves their origins and relationships unclear, and raises questions about the existence of major demographic phenomena analogous to the large-scale Bantu expansions. To address this, we have analysed the variation of 31 binary and 11 microsatellite markers on the non-recombining portion of the Y chromosome in Guinea-Bissau samples of diverse ethnic affiliations, some not studied before.ResultsThe Guinea-Bissau Y chromosome pool is characterized by low haplogroup diversity (D = 0.470, sd 0.033), with the predominant haplogroup E3a*-M2 shared among the ethnic clusters and reaching a maximum of 82.2% in the Mandenka people. The Felupe-Djola and Papel groups exhibit the highest diversity of lineages and harbor the deep-rooting haplogroups A-M91, E2-M75 and E3*-PN2, typical of Sahels more central and eastern areas. Their genetic distinction from other groups is statistically significant (P = 0.01) though not attributable to linguistic, geographic or religious criteria. Non sub-Saharan influences were associated with the presence of haplogroup R1b-P25 and particular lineages of E3b1-M78.ConclusionThe predominance and high diversity of haplogroup E3a*-M2 suggests a demographic expansion in the equatorial western fringe, possibly supported by a local agricultural center. The paternal pool of the Mandenka and Balanta displays evidence of a particularly marked population growth among the Guineans, possibly reflecting the demographic effects of the agriculturalist lifestyle and their putative relationship to the people that introduced early cultivation practices into West Africa. The paternal background of the Felupe-Djola and Papel ethnic groups suggests a better conserved ancestral pool deriving from East Africa, from where they have supposedly migrated in recent times. Despite the overall homogeneity in a multiethnic sample, which contrasts with their social structure, minor clusters suggest the imprints of multiple peoples at different timescales: traces of ancestral inhabitants in haplogroups A-M91 and B-M60, today typical of hunter-gatherers; North African influence in E3b1-M78 Y chromosomes, probably due to trans-Saharan contacts; and R1b-P25 lineages reflecting European admixture via the North Atlantic slave trade.


European Journal of Human Genetics | 2007

Africans in Yorkshire? The deepest-rooting clade of the Y phylogeny within an English genealogy.

Turi E. King; Emma J. Parkin; Geoff Swinfield; Fulvio Cruciani; Rosaria Scozzari; Alexandra Rosa; Si-Keun Lim; Yali Xue; Chris Tyler-Smith; Mark A. Jobling

The presence of Africans in Britain has been recorded since Roman times, but has left no apparent genetic trace among modern inhabitants. Y chromosomes belonging to the deepest-rooting clade of the Y phylogeny, haplogroup (hg) A, are regarded as African-specific, and no examples have been reported from Britain or elsewhere in Western Europe. We describe the presence of an hgA1 chromosome in an indigenous British male; comparison with African examples suggests a Western African origin. Seven out of 18 men carrying the same rare east-Yorkshire surname as the original male also carry hgA1 chromosomes, and documentary research resolves them into two genealogies with most-recent-common-ancestors living in Yorkshire in the late 18th century. Analysis using 77 Y-short tandem repeats (STRs) is consistent with coalescence a few generations earlier. Our findings represent the first genetic evidence of Africans among ‘indigenous’ British, and emphasize the complexity of human migration history as well as the pitfalls of assigning geographical origin from Y-chromosomal haplotypes.


Human Genetics | 2003

Y-chromosome lineages in Cabo Verde Islands witness the diverse geographic origin of its first male settlers

Rita Gonçalves; Alexandra Rosa; Ana Isabel Freitas; Ana Teresa Fernandes; Toomas Kivisild; Richard Villems; António Brehm

The Y-chromosome haplogroup composition of the population of the Cabo Verde Archipelago was profiled by using 32 single-nucleotide polymorphism markers and compared with potential source populations from Iberia, west Africa, and the Middle East. According to the traditional view, the major proportion of the founding population of Cabo Verde was of west African ancestry with the addition of a minor fraction of male colonizers from Europe. Unexpectedly, more than half of the paternal lineages (53.5%) of Cabo Verdeans clustered in haplogroups I, J, K, and R1, which are characteristic of populations of Europe and the Middle East, while being absent in the probable west African source population of Guiné-Bissau. Moreover, a high frequency of J* lineages in Cabo Verdeans relates them more closely to populations of the Middle East and probably provides the first genetic evidence of the legacy of the Jews. In addition, the considerable proportion (20.5%) of E3b(xM81) lineages indicates a possible gene flow from the Middle East or northeast Africa, which, at least partly, could be ascribed to the Sephardic Jews. In contrast to the predominance of west African mitochondrial DNA haplotypes in their maternal gene pool, the major west African Y-chromosome lineage E3a was observed only at a frequency of 15.9%. Overall, these results indicate that gene flow from multiple sources and various sex-specific patterns have been important in the formation of the genomic diversity in the Cabo Verde islands.


Frontiers in Genetics | 2013

Asthma—snapshot or motion picture?

Anabela G Berenguer; Alexandra Rosa; António Brehm

Asthma is a complex disease physiologically characterized by shortness of breath, coughing, and wheezing (Holgate, 2011). In response to a variety of stimuli, the airways become more sensitive leading to bronchial hyperresponsiveness (Sterk and Bel, 1989; Scichilone et al., 2006; Kang et al., 2012). Consequently, in a process known as bronchoconstriction, airways become narrower, impeding the normal airflow into and out of the lungs (WHO, 2011), by contraction of the bronchial smooth muscle (EPR-3, 2007). In addition, increased production of mucus occurs, further contributing to airway obstruction (EPR-3, 2007). Asthma is a chronic inflammatory disease, which if untreated can lead to structural changes in the smooth muscle and may result in airway remodeling (EPR-3, 2007).


Forensic Science International | 2006

Population data on 11 Y-chromosome STRs from Guiné-Bissau.

Alexandra Rosa; Carolina Ornelas; António Brehm; Richard Villems


Molecular Human Reproduction | 2006

DAZ gene copies: evidence of Y chromosome evolution

Ana Teresa Fernandes; Susana Fernandes; Rita Gonçalves; Rosália Sá; Paula Costa; Alexandra Rosa; Cristina Ferrás; Mário Sousa; António Brehm; Alberto Barros

Collaboration


Dive into the Alexandra Rosa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge