Alexandra Schubert-Unkmeir
University of Würzburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexandra Schubert-Unkmeir.
PLOS Pathogens | 2010
Alexandra Schubert-Unkmeir; Christian Konrad; Heiko Slanina; Florian Czapek; Sabrina Hebling; Matthias Frosch
Disruption of the blood-brain barrier (BBB) is a hallmark event in the pathophysiology of bacterial meningitis. Several inflammatory mediators, such as tumor necrosis factor alpha (TNF-α), nitric oxide and matrix metalloproteinases (MMPs), contribute to this disruption. Here we show that infection of human brain microvascular endothelial cells (HBMEC) with Neisseria meningitidis induced an increase of permeability at prolonged time of infection. This was paralleled by an increase in MMP-8 activity in supernatants collected from infected cells. A detailed analysis revealed that MMP-8 was involved in the proteolytic cleavage of the tight junction protein occludin, resulting in its disappearance from the cell periphery and cleavage to a lower-sized 50-kDa protein in infected HBMEC. Abrogation of MMP-8 activity by specific inhibitors as well as transfection with MMP-8 siRNA abolished production of the cleavage fragment and occludin remained attached to the cell periphery. In addition, MMP-8 affected cell adherence to the underlying matrix. A similar temporal relationship was observed for MMP activity and cell detachment. Injury of the HBMEC monolayer suggested the requirement of direct cell contact because no detachment was observed when bacteria were placed above a transwell membrane or when bacterial supernatant was directly added to cells. Inhibition of MMP-8 partially prevented detachment of infected HBMEC and restored BBB permeability. Together, we established that MMP-8 activity plays a crucial role in disassembly of cell junction components and cell adhesion during meningococcal infection.
Cellular Microbiology | 2004
Olga Sokolova; Nicole Heppel; Ruth Jägerhuber; Kwang Sik Kim; Matthias Frosch; Martin Eigenthaler; Alexandra Schubert-Unkmeir
Neisseria meningitidis traversal across the blood–cerebrospinal fluid barrier is an essential step in the pathogenesis of bacterial meningitis. We have previously shown that invasion of human brain microvascular endothelial cells (HBMEC) by meningococci is mediated by bacterial outer membrane protein Opc that binds fibronectin, thereby anchoring the bacterium to the integrin α5β1‐receptor on the endothelial cell surface. However, subsequent signal transduction mechanisms essential for or regulated by N. meningitidis adhesion and invasion, or HBMEC responses to N. meningitidis are unknown. In this report we investigated the role of c‐Jun N‐terminal kinases 1 and 2 (JNK1 and JNK2), p38 mitogen‐activated (MAP) kinase and protein tyrosine kinases in endothelial–N. meningitidis interaction. Binding of meningococci to HBMEC phosphorylated and activated JNK1 and JNK2 and p38 MAPK as well as their direct substrates c‐Jun and MAP kinase activated kinase‐2 (MAPKAPK‐2), respectively. Non‐invasive meningococcal strains lacking opc gene (opc mutants and sequence type 11 complex meningococci) still activated p38 MAPK, however, failed to activate JNK. Inhibition of JNK1 and JNK2 significantly reduced internalization of N. meningitidis by HBMEC without affecting its adherence. Blocking the endothelial integrin α5β1 also decreased N. meningitidis‐induced JNK activation in HBMEC. These findings indicate the crucial role of JNK signalling pathway in N. meningitidis invasion in HBMEC. In contrast, p38 MAPK pathway was important for the control of interleukin‐6 (IL‐6) and IL‐8 release by HBMEC. Genistein, a protein tyrosine kinase inhibitor, decreased both invasion of N. meningitidis into HBMEC and IL‐6 and IL‐8 release, indicating that protein tyrosine kinases, which link signals from integrins to intracellular signalling pathways are essential for both bacterial internalization and cytokine secretion by HBMEC.
Clinical & Developmental Immunology | 2012
Iris Müller; Michael H. Freitag; Gabriele Poggensee; Elke Scharnetzky; Eberhard Straube; Christof Schoerner; Harald Hlobil; Hans-Jochen Hagedorn; Gerold Stanek; Alexandra Schubert-Unkmeir; Douglas E. Norris; Jochen Gensichen; Klaus-Peter Hunfeld
Background. Data on the economic impact of Lyme borreliosis (LB) on European health care systems is scarce. This project focused on the epidemiology and costs for laboratory testing in LB patients in Germany. Materials and Methods. We performed a sentinel analysis of epidemiological and medicoeconomic data for 2007 and 2008. Data was provided by a German statutory health insurance (DAK) company covering approx. 6.04 million members. In addition, the quality of diagnostic testing for LB in Germany was studied. Results. In 2007 and 2008, the incident diagnosis LB was coded on average for 15,742 out of 6.04 million insured members (0.26%). 20,986 EIAs and 12,558 immunoblots were ordered annually for these patients. For all insured members in the outpatient sector, a total of 174,820 EIAs and 52,280 immunoblots were reimbursed annually to health care providers (cost: 2,600,850€). For Germany, the overall expected cost is estimated at 51,215,105€. However, proficiency testing data questioned test quality and standardization of diagnostic assays used. Conclusion. Findings from this study suggest ongoing issues related to care for LB and may help to improve future LB disease management.
Journal of Microbiological Methods | 2011
Heiko Slanina; A. König; Heike Claus; Matthias Frosch; Alexandra Schubert-Unkmeir
Measuring cell proliferation and cell death during bacterial infection involves performing end-point assays that represent the response at a single time point. A new technology from Roche Applied Science and ACEA Biosciences allows continuous monitoring of cells in real-time using specialized cell culture microplates containing micro-electrodes. The xCELLigence system enables continuous measurement and quantification of cell adhesion, proliferation, spreading, cell death and detachment, thus creating a picture of cell function during bacterial infection. Furthermore, lag and log phases can be determined to estimate optimal times to infect cells. In this study we used this system to provide valuable insights into cell function in response to several virulence factors of the meningitis causing pathogen Neisseria meningitidis, including the lipopolysaccharide (LPS), the polysaccharide capsule and the outer membrane protein Opc. We observed that prolonged time of infection with pathogenic Neisseria strains led to morphological changes including cell rounding and loss of cell-cell contact, thus resulting in changed electrical impedance as monitored in real-time. Furthermore, cell function in response to 14 strains of apathogenic Neisseria spp. (N. lactamica and N. mucosa) was analyzed. In contrast, infection with apathogenic N. lactamica isolates did not change electrical impedance monitored for 48 h. Together our data show that this system can be used as a rapid monitoring tool for cellular function in response to bacterial infection and combines high data acquisition rates with ease of handling.
Infection and Immunity | 2007
Alexandra Schubert-Unkmeir; Olga Sokolova; Ursula Panzner; Martin Eigenthaler; Matthias Frosch
ABSTRACT To extend our knowledge of target proteins in endothelial cells infected with the meningitis-causing pathogen Neisseria meningitidis, we characterized the interaction between the bacterial and human brain microvascular endothelial cell (HBMEC) monolayers. By use of human cDNA microarrays, transcriptional analysis revealed distinct responses to 4 and 8 h of infection. We also addressed the question of whether the major virulence factor of meningococci, i.e., the capsule, influences the host cell response. Of the 1,493 (at 4 h postinfection) and 1,246 (at 8 h postinfection) genes with altered expression upon bacterial contact, about 49.4% and 45%, respectively, depended on capsule expression. In particular, we identified an increase of expression for genes encoding proteins involved in bacterial adhesion and invasion. High levels of apoptosis-related gene (bad, bak, asp, and immediate-early response gene 1) expression could also be detected in infected cells. Further analyses confirmed that HBMECs displayed several hallmarks of apoptosis in response to N. meningitidis infection, namely, phosphatidylserine translocation and activation of caspase 3 and AMP-activated protein kinase α. Moreover, several differentially regulated genes not previously known to respond to meningococcal infection were identified. Of these, genes encoding cell adhesion proteins (CD44, CD98, and CD99), genes involved in downstream signaling of integrins (integrin-linked kinase, mitogen-activated protein kinase kinase 1, and mitogen-activated protein kinase kinase kinase 10) as well as negative regulators of these pathways (dual-specificity phosphatases 1, 5, and 14 and G protein pathway suppressor 2), and genes involved in cytoskeleton reorganization (those encoding Arp2/3, p34-arc, actinin alpha 1, vasodilatator-stimulated protein, and Wiskott-Aldrich syndrome protein) were the most prominent. This global transcriptional analysis creates a new platform for further molecular and cellular analysis of the interaction between N. meningitidis and target cells.
PLOS Pathogens | 2014
Alexander Simonis; Sabrina Hebling; Erich Gulbins; Sibylle Schneider-Schaulies; Alexandra Schubert-Unkmeir
The interaction with brain endothelial cells is central to the pathogenicity of Neisseria meningitidis infections. Here, we show that N. meningitidis causes transient activation of acid sphingomyelinase (ASM) followed by ceramide release in brain endothelial cells. In response to N. meningitidis infection, ASM and ceramide are displayed at the outer leaflet of the cell membrane and condense into large membrane platforms which also concentrate the ErbB2 receptor. The outer membrane protein Opc and phosphatidylcholine-specific phospholipase C that is activated upon binding of the pathogen to heparan sulfate proteoglycans, are required for N. meningitidis-mediated ASM activation. Pharmacologic or genetic ablation of ASM abrogated meningococcal internalization without affecting bacterial adherence. In accordance, the restricted invasiveness of a defined set of pathogenic isolates of the ST-11/ST-8 clonal complex into brain endothelial cells directly correlated with their restricted ability to induce ASM and ceramide release. In conclusion, ASM activation and ceramide release are essential for internalization of Opc-expressing meningococci into brain endothelial cells, and this segregates with invasiveness of N. meningitidis strains.
Acta Neuropathologica | 2016
Kelly S. Doran; Marcus Fulde; Nina Gratz; Brandon J. Kim; Roland Nau; Nemani V. Prasadarao; Alexandra Schubert-Unkmeir; Elaine Tuomanen; Peter Valentin-Weigand
Bacterial meningitis is a devastating disease occurring worldwide with up to half of the survivors left with permanent neurological sequelae. Due to intrinsic properties of the meningeal pathogens and the host responses they induce, infection can cause relatively specific lesions and clinical syndromes that result from interference with the function of the affected nervous system tissue. Pathogenesis is based on complex host–pathogen interactions, some of which are specific for certain bacteria, whereas others are shared among different pathogens. In this review, we summarize the recent progress made in understanding the molecular and cellular events involved in these interactions. We focus on selected major pathogens, Streptococcus pneumonia, S. agalactiae (Group B Streptococcus), Neisseria meningitidis, and Escherichia coli K1, and also include a neglected zoonotic pathogen, Streptococcus suis. These neuroinvasive pathogens represent common themes of host–pathogen interactions, such as colonization and invasion of mucosal barriers, survival in the blood stream, entry into the central nervous system by translocation of the blood–brain and blood–cerebrospinal fluid barrier, and induction of meningeal inflammation, affecting pia mater, the arachnoid and subarachnoid spaces.
PLOS ONE | 2012
Heiko Slanina; Sabrina Hebling; Christoph R. Hauck; Alexandra Schubert-Unkmeir
Entry of Neisseria meningitidis (the meningococcus) into human brain microvascular endothelial cells (HBMEC) is mediated by fibronectin or vitronectin bound to the surface protein Opc forming a bridge to the respective integrins. This interaction leads to cytoskeletal rearrangement and uptake of meningococci. In this study, we determined that the focal adhesion kinase (FAK), which directly associates with integrins, is involved in integrin-mediated internalization of N. meningitidis in HBMEC. Inhibition of FAK activity by the specific FAK inhibitor PF 573882 reduced Opc-mediated invasion of HBMEC more than 90%. Moreover, overexpression of FAK mutants that were either impaired in the kinase activity or were not capable of autophosphorylation or overexpression of the dominant-negative version of FAK (FRNK) blocked integrin-mediated internalization of N. meningitidis. Importantly, FAK-deficient fibroblasts were significantly less invaded by N. meningitidis. Furthermore, N. meningitidis induced tyrosine phosphorylation of several host proteins including the FAK/Src complex substrate cortactin. Inhibition of cortactin expression by siRNA silencing and mutation of critical amino acid residues within cortactin, that encompass Arp2/3 association and dynamin binding, significantly reduced meningococcal invasion into eukaryotic cells suggesting that both domains are critical for efficient uptake of N. meningitidis into eukaryotic cells. Together, these results indicate that N. meningitidis exploits the integrin signal pathway for its entry and that FAK mediates the transfer of signals from activated integrins to the cytoskeleton. A cooperative interplay between FAK, Src and cortactin then enables endocytosis of N. meningitidis into host cells.
Molecular Microbiology | 2009
Stephanie Schielke; Claudia Huebner; Carolin Spatz; Virginie Nägele; Nikolaus Ackermann; Matthias Frosch; Oliver Kurzai; Alexandra Schubert-Unkmeir
Two closely related pathogenic species have evolved in the genus Neisseria: N. meningitidis and N. gonorrhoeae, which occupy different host niches and cause different clinical entities. In contrast to the pathogen N. gonorrhoeae, N. meningitidis is a commensal and only rarely becomes invasive. Little is known about the genetic background of the entirely different lifestyles in these closely related species. Meningococcal NMB1843 encodes a transcriptional regulator of the MarR family. The gonococcal homologue FarR regulates expression of farAB, mediating fatty acid resistance. We show that NmFarR also directly interacts with NmfarAB. Yet, by contrast to N. gonorrhoeae, no significant sensitivity to fatty acids was observed in a ΔfarR mutant due to intrinsic resistance of meningococci. Further analyses identified an NmFarR‐repressed protein absent from N. gonorrhoeae. This protein is the meningococcus‐specific adhesin and vaccine component NadA that has most likely been acquired by horizontal gene transfer. NmFarR binds to a 16 base pair palindromic repeat within the nadA promoter. De‐repression of nadA resulted in significantly higher association of a ΔfarR strain with epithelial cells. Hence NmFarR has gained control over a meningococcus‐specific gene involved in host colonization and thus contributed to divergent niche adaptation in pathogenic Neisseriae.
Infection and Immunity | 2010
Heiko Slanina; Alexandra König; Sabrina Hebling; Christof R. Hauck; Matthias Frosch; Alexandra Schubert-Unkmeir
ABSTRACT Neisseria meningitidis, the causative agent of meningitis and septicemia, is able to attach to and invade a variety of cell types. In a previous study we showed that entry of N. meningitidis into human brain microvascular endothelial cells (HBMEC) is mediated by fibronectin bound to the outer membrane protein Opc, which forms a molecular bridge to α5β1-integrins. This interaction results in cytoskeletal remodeling and uptake of the bacteria. In this study we identified and characterized the intracellular signals involved in integrin-initiated uptake of N. meningitidis. We determined that the Src protein tyrosine kinases (PTKs) are activated in response to contact with N. meningitidis. Inhibition of Src PTK activity by the general tyrosine kinase inhibitor genistein and the specific Src inhibitor PP2 reduced Opc-mediated invasion of HBMEC and human embryonic kidney (HEK) 293T cells up to 90%. Moreover, overexpression of the cellular Src antagonist C-terminal Src kinase (CSK) also significantly reduced N. meningitidis invasion. Src PTK-deficient fibroblasts were impaired in the ability to internalize N. meningitidis and showed reduced phosphorylation of the cytoskeleton and decreased development of stress fibers. These data indicate that the Src family PTKs, particularly the Src protein, along with other proteins, are important signal proteins that are responsible for the transfer of signals from activated integrins to the cytoskeleton and thus mediate the endocytosis of N. meningitidis into brain endothelial cells.