Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandra Schwarz is active.

Publication


Featured researches published by Alexandra Schwarz.


The FASEB Journal | 2013

De novo Ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies

Alexandra Schwarz; Björn M. von Reumont; Jan Erhart; Andrezza C. Chagas; José M. C. Ribeiro; Michalis Kotsyfakis

Tick salivary gland (SG) proteins possess powerful pharmacologic properties that facilitate tick feeding and pathogen transmission. For the first time, SG transcriptomes of Ixodes ricinus, an important disease vector for humans and animals, were analyzed using next‐generation sequencing. SGs were collected from different tick life stages fed on various animal species, including cofeeding of nymphs and adults on the same host. Four cDNA samples were sequenced, discriminating tick SG transcriptomes of early‐ and late‐feeding nymphs or adults. In total, 441,381,454 pyrosequencing reads and 67,703,183 Illumina reads were assembled into 272,220 contigs, of which 34,560 extensively annotated coding sequences are disclosed; 8686 coding sequences were submitted to GenBank. Overall, 13% of contigs were classified as secreted proteins that showed significant differences in the transcript representation among the 4 SG samples, including high numbers of sample‐specific transcripts. Detailed phylogenetic reconstructions of two relatively abundant SG‐secreted protein families demonstrated how this study improves our understanding of the molecular evolution of hematophagy in arthropods. Our data significantly increase the available genomic information for I. ricinus and form a solid basis for future tick genome/transcriptome assemblies and the functional analysis of effectors that mediate the feeding physiology and parasite‐vector interaction of I. ricinus.—Schwarz, A., von Reumont, B.M., Erhart, J., Chagas, AC., Ribeiro, J.M.C., Kotsyfakis, M. De novo Ixodes ricinus salivary gland transcriptome analysis using two next‐generation sequencing methodologies. FASEB J. 27, 4745–4756 (2013). www.fasebj.org


Scientific Reports | 2015

Tissue- and time-dependent transcription in Ixodes ricinus salivary glands and midguts when blood feeding on the vertebrate host.

Michalis Kotsyfakis; Alexandra Schwarz; Jan Erhart; José M. C. Ribeiro

Ixodes ricinus is a tick that transmits the pathogens of Lyme and several arboviral diseases. Pathogens invade the tick midgut, disseminate through the hemolymph, and are transmitted to the vertebrate host via the salivary glands; subverting these processes could be used to interrupt pathogen transfer. Here, we use massive de novo sequencing to characterize the transcriptional dynamics of the salivary and midgut tissues of nymphal and adult I. ricinus at various time points after attachment on the vertebrate host. Members of a number of gene families show stage- and time-specific expression. We hypothesize that gene expression switching may be under epigenetic control and, in support of this, identify 34 candidate proteins that modify histones. I. ricinus-secreted proteins are encoded by genes that have a non-synonymous to synonymous mutation rate even greater than immune-related genes. Midgut transcriptome (mialome) analysis reveals several enzymes associated with protein, carbohydrate, and lipid digestion, transporters and channels that might be associated with nutrient uptake, and immune-related transcripts including antimicrobial peptides. This publicly available dataset supports the identification of protein and gene targets for biochemical and physiological studies that exploit the transmission lifecycle of this disease vector for preventative and therapeutic purposes.


Molecular & Cellular Proteomics | 2014

A Systems Level Analysis Reveals Transcriptomic and Proteomic Complexity in Ixodes Ricinus Midgut and Salivary Glands During Early Attachment and Feeding

Alexandra Schwarz; Stefan Tenzer; Michael Hackenberg; Jan Erhart; Aslihan Gerhold-Ay; Johanna Mazur; Jörg Kuharev; José M. C. Ribeiro; Michail Kotsyfakis

Although pathogens are usually transmitted within the first 24–48 h of attachment of the castor bean tick Ixodes ricinus, little is known about the ticks biological responses at these earliest phases of attachment. Tick midgut and salivary glands are the main tissues involved in tick blood feeding and pathogen transmission but the limited genomic information for I. ricinus delays the application of high-throughput methods to study their physiology. We took advantage of the latest advances in the fields of Next Generation RNA-Sequencing and Label-free Quantitative Proteomics to deliver an unprecedented, quantitative description of the gene expression dynamics in the midgut and salivary glands of this disease vector upon attachment to the vertebrate host. A total of 373 of 1510 identified proteins had higher expression in the salivary glands, but only 110 had correspondingly high transcript levels in the same tissue. Furthermore, there was midgut-specific expression of 217 genes at both the transcriptome and proteome level. Tissue-dependent transcript, but not protein, accumulation was revealed for 552 of 885 genes. Moreover, we discovered the enrichment of tick salivary glands in proteins involved in gene transcription and translation, which agrees with the secretory role of this tissue; this finding also agrees with our finding of lower tick t-RNA representation in the salivary glands when compared with the midgut. The midgut, in turn, is enriched in metabolic components and proteins that support its mechanical integrity in order to accommodate and metabolize the ingested blood. Beyond understanding the physiological events that support hematophagy by arthropod ectoparasites, we discovered more than 1500 proteins located at the interface between ticks, the vertebrate host, and the tick-borne pathogens. Thus, our work significantly improves the knowledge of the genetics underlying the transmission lifecycle of this tick species, which is an essential step for developing alternative methods to better control tick-borne diseases.


Ticks and Tick-borne Diseases | 2012

The role of cystatins in tick physiology and blood feeding.

Alexandra Schwarz; James J. Valdés; Michalis Kotsyfakis

Ticks, as obligate hematophagous ectoparasites, impact greatly on animal and human health because they transmit various pathogens worldwide. Over the last decade, several cystatins from different hard and soft ticks were identified and biochemically analyzed for their role in the physiology and blood feeding lifestyle of ticks. All these cystatins are potent inhibitors of papain-like cysteine proteases, but not of legumain. Tick cystatins were either detected in the salivary glands and/or the midgut, key tick organs responsible for blood digestion and the expression of pharmacologically potent salivary proteins for blood feeding. For example, the transcription of two cystatins named HlSC-1 and Sialostatin L2 was highly upregulated in these tick tissues during feeding. Vaccinating hosts against Sialostatin L2 and Om-cystatin 2 as well as silencing of a cystatin gene from Amblyomma americanum significantly inhibited the feeding ability of ticks. Additionally, Om-cystatin 2 and Sialostatin L possessed strong host immunosuppressive properties by inhibiting dendritic cell maturation due to their interaction with cathepsin S. These two cystatins, together with Sialostatin L2 are the first tick cystatins with resolved three-dimensional structure. Sialostatin L, furthermore, showed preventive properties against autoimmune diseases. In the case of the cystatin Hlcyst-2, experimental evidence showed its role in tick innate immunity, since increased Hlcyst-2 transcript levels were detected in Babesia gibsoni-infected larval ticks and the protein inhibited Babesia growth. Other cystatins, such as Hlcyst-1 or Om-cystatin 2 are assumed to be involved in regulating blood digestion. Only for Bmcystatin was a role in tick embryogenesis suggested. Finally, all the biochemically analyzed tick cystatins are powerful protease inhibitors, and some may be novel antigens for developing anti-tick vaccines and drugs of medical importance due to their stringent target specificity.


International Journal for Parasitology | 2009

Antibody responses of domestic animals to salivary antigens of Triatoma infestans as biomarkers for low-level infestation of triatomines

Alexandra Schwarz; Jeremy M. Sternberg; Valerie Johnston; Nora Medrano-Mercado; Jennifer M. Anderson; Jen C.C. Hume; Jesus G. Valenzuela; Günter A. Schaub; Peter F. Billingsley

Hematophagous arthropods such as Triatoma infestans, the vector of Trypanosoma cruzi, elicit host-immune responses during feeding. Characterization of antibody responses to salivary antigens offers the potential to develop immunologically based monitoring techniques for exposure to re-emergent triatomine bug populations in peridomestic animals. IgG-antibody responses to the salivary antigens of T.infestans have been detected in chickens as soon as 2 days after the first exposure to five adult bugs. Chickens and guinea pigs regularly exposed to this number of triatomines showed a significantly lower anti-saliva antibody titre than animals exposed to 25 adults and fifth instars of four different T.infestans strains originating from Bolivia and from Northern Chile. Highly immunogenic salivary antigens of 14 and 21kDa were recognised by all chicken sera and of 79kDa by all guinea pig sera. Cross-reactivity studies using saliva or salivary gland extracts from different hematophagous species, e.g. different triatomines, bed bugs, mosquitoes, sand flies and ticks, as well as chicken sera exposed to triatomines and mosquitoes, demonstrated that the 14 and 21kDa salivary antigens were only found in triatomines. Sera from peridomestic chickens and guinea pigs in sites of known T.infestans challenge in Bolivia also recognised the 14 and 21kDa antigens. These represent promising epidemiological markers for the detection of small numbers of feeding bugs and hence may be a new tool for vector surveillance in Chagas disease control programs.


Journal of Biological Chemistry | 2013

Salivary Antigen-5/CAP Family Members Are Cu2+-dependent Antioxidant Enzymes That Scavenge O2⨪ and Inhibit Collagen-induced Platelet Aggregation and Neutrophil Oxidative Burst

Teresa C. F. Assumpção; Dongying Ma; Alexandra Schwarz; Karine Reiter; Jaime M. Santana; John F. Andersen; José M. C. Ribeiro; Glenn Nardone; Lee L. Yu; Ivo M. B. Francischetti

Background: The function of most salivary antigen-5/CAP members has remained elusive for decades. Results: Antigen-5 members bind Cu2+ and exhibit antioxidant activity by scavenging O2⨪. It inhibits platelet aggregation by collagen and neutrophil oxidative burst. Conclusion: Antigen-5 emerges as a novel family of antioxidant enzymes targeting O2⨪. Significance: Scavenging O2⨪ is conceivably associated with decreased inflammation in the microcirculation and may assist blood-sucking insects to successfully feed on blood. The function of the antigen-5/CAP family of proteins found in the salivary gland of bloodsucking animals has remained elusive for decades. Antigen-5 members from the hematophagous insects Dipetalogaster maxima (DMAV) and Triatoma infestans (TIAV) were expressed and discovered to attenuate platelet aggregation, ATP secretion, and thromboxane A2 generation by low doses of collagen (<1 μg/ml) but no other agonists. DMAV did not interact with collagen, glycoprotein VI, or integrin α2β1. This inhibitory profile resembles the effects of antioxidants Cu,Zn-superoxide dismutase (Cu,Zn-SOD) in platelet function. Accordingly, DMAV was found to inhibit cytochrome c reduction by O2⨪ generated by the xanthine/xanthine oxidase, implying that it exhibits antioxidant activity. Moreover, our results demonstrate that DMAV blunts the luminescence signal of O2⨪ generated by phorbol 12-myristate 13-acetate-stimulated neutrophils. Mechanistically, inductively coupled plasma mass spectrometry and fluorescence spectroscopy revealed that DMAV, like Cu,Zn-SOD, interacts with Cu2+, which provides redox potential for catalytic removal of O2⨪. Notably, surface plasmon resonance experiments (BIAcore) determined that DMAV binds sulfated glycosaminoglycans (e.g. heparin, KD ∼100 nmol/liter), as reported for extracellular SOD. Finally, fractions of the salivary gland of D. maxima with native DMAV contain Cu2+ and display metal-dependent antioxidant properties. Antigen-5/CAP emerges as novel family of Cu2+-dependent antioxidant enzymes that inhibit neutrophil oxidative burst and negatively modulate platelet aggregation by a unique salivary mechanism.


PLOS Neglected Tropical Diseases | 2009

Immunogenic Salivary Proteins of Triatoma infestans: Development of a Recombinant Antigen for the Detection of Low-Level Infestation of Triatomines

Alexandra Schwarz; Stefan Helling; Nicolas Collin; Clarissa Teixeira; Nora Medrano-Mercado; Jen C.C. Hume; Teresa C.F. Assumpção; Katrin Marcus; Christian Stephan; Helmut E. Meyer; José M. C. Ribeiro; Peter F. Billingsley; Jesus G. Valenzuela; Jeremy M. Sternberg; G. A. Schaub

Background Triatomines are vectors of Trypanosoma cruzi, the etiological agent of Chagas disease in Latin America. The most effective vector, Triatoma infestans, has been controlled successfully in much of Latin America using insecticide spraying. Though rarely undertaken, surveillance programs are necessary in order to identify new infestations and estimate the intensity of triatomine bug infestations in domestic and peridomestic habitats. Since hosts exposed to triatomines develop immune responses to salivary antigens, these responses can be evaluated for their usefulness as epidemiological markers to detect infestations of T. infestans. Methodology/Principal Findings T. infestans salivary proteins were separated by 2D-gel electrophoresis and tested for their immunogenicity by Western blotting using sera from chickens and guinea pigs experimentally exposed to T. infestans. From five highly immunogenic protein spots, eight salivary proteins were identified by nano liquid chromatography-electrospray ionization-tandem mass spectrometry (nanoLC-ESI-MS/MS) and comparison to the protein sequences of the National Center for Biotechnology Information (NCBI) database and expressed sequence tags of a unidirectionally cloned salivary gland cDNA library from T. infestans combined with the NCBI yeast protein sub-database. The 14.6 kDa salivary protein [gi|149689094] was produced as recombinant protein (rTiSP14.6) in a mammalian cell expression system and recognized by all animal sera. The specificity of rTiSP14.6 was confirmed by the lack of reactivity to anti-mosquito and anti-sand fly saliva antibodies. However, rTiSP14.6 was recognized by sera from chickens exposed to four other triatomine species, Triatoma brasiliensis, T. sordida, Rhodnius prolixus, and Panstrongylus megistus and by sera of chickens from an endemic area of T. infestans and Chagas disease in Bolivia. Conclusions/Significance The recombinant rTiSP14.6 is a suitable and promising epidemiological marker for detecting the presence of small numbers of different species of triatomines and could be developed for use as a new tool in surveillance programs, especially to corroborate vector elimination in Chagas disease vector control campaigns.


PLOS ONE | 2013

Tryptogalinin Is a Tick Kunitz Serine Protease Inhibitor with a Unique Intrinsic Disorder

James J. Valdés; Alexandra Schwarz; Israel Cabeza de Vaca; Eric Calvo; Joao H. F. Pedra; Victor Guallar; Michalis Kotsyfakis

Background A salivary proteome-transcriptome project on the hard tick Ixodes scapularis revealed that Kunitz peptides are the most abundant salivary proteins. Ticks use Kunitz peptides (among other salivary proteins) to combat host defense mechanisms and to obtain a blood meal. Most of these Kunitz peptides, however, remain functionally uncharacterized, thus limiting our knowledge about their biochemical interactions. Results We discovered an unusual cysteine motif in a Kunitz peptide. This peptide inhibits several serine proteases with high affinity and was named tryptogalinin due to its high affinity for β-tryptase. Compared with other functionally described peptides from the Acari subclass, we showed that tryptogalinin is phylogenetically related to a Kunitz peptide from Rhipicephalus appendiculatus, also reported to have a high affinity for β-tryptase. Using homology-based modeling (and other protein prediction programs) we were able to model and explain the multifaceted function of tryptogalinin. The N-terminus of the modeled tryptogalinin is detached from the rest of the peptide and exhibits intrinsic disorder allowing an increased flexibility for its high affinity with its inhibiting partners (i.e., serine proteases). Conclusions By incorporating experimental and computational methods our data not only describes the function of a Kunitz peptide from Ixodes scapularis, but also allows us to hypothesize about the molecular basis of this function at the atomic level.


BMC Evolutionary Biology | 2014

Understanding the evolutionary structural variability and target specificity of tick salivary Kunitz peptides using next generation transcriptome data

Alexandra Schwarz; Alejandro Cabezas-Cruz; Jan Kopecký; James J. Valdés

BackgroundTicks are blood-sucking arthropods and a primary function of tick salivary proteins is to counteract the host’s immune response. Tick salivary Kunitz-domain proteins perform multiple functions within the feeding lesion and have been classified as venoms; thereby, constituting them as one of the important elements in the arms race with the host. The two main mechanisms advocated to explain the functional heterogeneity of tick salivary Kunitz-domain proteins are gene sharing and gene duplication. Both do not, however, elucidate the evolution of the Kunitz family in ticks from a structural dynamic point of view. The Red Queen hypothesis offers a fruitful theoretical framework to give a dynamic explanation for host-parasite interactions. Using the recent salivary gland Ixodes ricinus transcriptome we analyze, for the first time, single Kunitz-domain encoding transcripts by means of computational, structural bioinformatics and phylogenetic approaches to improve our understanding of the structural evolution of this important multigenic protein family.ResultsOrganizing the I. ricinus single Kunitz-domain peptides based on their cysteine motif allowed us to specify a putative target and to relate this target specificity to Illumina transcript reads during tick feeding. We observe that several of these Kunitz peptide groups vary in their translated amino acid sequence, secondary structure, antigenicity, and intrinsic disorder, and that the majority of these groups are subject to a purifying (negative) selection. We finalize by describing the evolution and emergence of these Kunitz peptides. The overall interpretation of our analyses discloses a rapidly emerging Kunitz group with a distinct disulfide bond pattern from the I. ricinus salivary gland transcriptome.ConclusionsWe propose a model to explain the structural and functional evolution of tick salivary Kunitz peptides that we call target-oriented evolution. Our study reveals that combining analytical approaches (transcriptomes, computational, bioinformatics and phylogenetics) improves our understanding of the biological functions of important salivary gland mediators during tick feeding.


International Journal for Parasitology | 2010

IgM-antibody responses of chickens to salivary antigens of Triatoma infestans as early biomarkers for low-level infestation of triatomines

Alexandra Schwarz; Nora Medrano-Mercado; Peter F. Billingsley; Günter A. Schaub; Jeremy M. Sternberg

The recombinant form of a highly immunogenic 14.6 kDa protein in Triatoma infestans saliva (rTiSP14.6) is a potential epidemiological marker for the detection of triatomine bug populations using IgG responses in peridomestic chickens. However, the persistence of the IgG response prevents it being of value for several months in areas where triatomine control programmes have been implemented. In this investigation, IgM-antibody reactions to crude salivary antigens or rTiSP14.6 decayed rapidly after exposure of chickens and were measurable for only 18 days after a single challenge with T. infestans. In serial exposure experiments, chickens from low and high exposure groups showed no significant differences in anti-saliva and anti-rTiSP14.6 IgM-antibody titres. Highly immunogenic salivary antigens of 12 and 14 kDa were recognised by all chicken sera. Sera from peridomestic chickens from sites of known T. infestans infestation in Bolivia also recognised these two antigens and no differences in the IgM responses of sera from chickens from low and high infestation households were detected. IgM responses were specific to infested households and could not be detected in sera from non-infested households. Cross-reactivity studies showed that at least four other triatomine species share the 14.6 kDa salivary antigen. No IgM responses were detected against salivary proteins of mosquitoes and sandflies. Thus, we believe that rTiSP14.6 represents a promising epidemiological marker for the detection of low numbers of triatomines in peridomestic habitats, and the comparison of IgM and IgG responses can be used to detect re-infestation soon after insecticide-based control programmes.

Collaboration


Dive into the Alexandra Schwarz's collaboration.

Top Co-Authors

Avatar

José M. C. Ribeiro

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Erhart

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Michalis Kotsyfakis

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James J. Valdés

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Michael Z. Levy

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge