Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandra Snyder is active.

Publication


Featured researches published by Alexandra Snyder.


Science | 2015

Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer

Naiyer A. Rizvi; Matthew D. Hellmann; Alexandra Snyder; Pia Kvistborg; Vladimir Makarov; Jonathan J. Havel; William R. Lee; Jianda Yuan; Phillip Wong; Teresa S. Ho; Martin L. Miller; Natasha Rekhtman; Andre L. Moreira; Fawzia Ibrahim; Cameron Bruggeman; Billel Gasmi; Roberta Zappasodi; Yuka Maeda; Chris Sander; Edward B. Garon; Taha Merghoub; Jedd D. Wolchok; Ton N. M. Schumacher; Timothy A. Chan

Immune checkpoint inhibitors, which unleash a patient’s own T cells to kill tumors, are revolutionizing cancer treatment. To unravel the genomic determinants of response to this therapy, we used whole-exome sequencing of non–small cell lung cancers treated with pembrolizumab, an antibody targeting programmed cell death-1 (PD-1). In two independent cohorts, higher nonsynonymous mutation burden in tumors was associated with improved objective response, durable clinical benefit, and progression-free survival. Efficacy also correlated with the molecular smoking signature, higher neoantigen burden, and DNA repair pathway mutations; each factor was also associated with mutation burden. In one responder, neoantigen-specific CD8+ T cell responses paralleled tumor regression, suggesting that anti–PD-1 therapy enhances neoantigen-specific T cell reactivity. Our results suggest that the genomic landscape of lung cancers shapes response to anti–PD-1 therapy. An anticancer drug is more effective against tumors that carry more mutations. More mutations predict better efficacy Despite the remarkable success of cancer immunotherapies, many patients do not respond to treatment. Rizvi et al. studied the tumors of patients with non–small-cell lung cancer undergoing immunotherapy. In two independent cohorts, treatment efficacy was associated with a higher number of mutations in the tumors. In one patient, a tumor-specific T cell response paralleled tumor regression. Science, this issue p. 124


The New England Journal of Medicine | 2014

Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma

Alexandra Snyder; Vladimir Makarov; Taha Merghoub; Jianda Yuan; Jesse M. Zaretsky; Alexis Desrichard; Logan A. Walsh; Michael A. Postow; Phillip Wong; Teresa S. Ho; Travis J. Hollmann; Cameron Bruggeman; Kasthuri Kannan; Yanyun Li; Ceyhan Elipenahli; Cailian Liu; Christopher T. Harbison; Lisu Wang; Antoni Ribas; Jedd D. Wolchok; Timothy A. Chan

BACKGROUND Immune checkpoint inhibitors are effective cancer treatments, but molecular determinants of clinical benefit are unknown. Ipilimumab and tremelimumab are antibodies against cytotoxic T-lymphocyte antigen 4 (CTLA-4). Anti-CTLA-4 treatment prolongs overall survival in patients with melanoma. CTLA-4 blockade activates T cells and enables them to destroy tumor cells. METHODS We obtained tumor tissue from patients with melanoma who were treated with ipilimumab or tremelimumab. Whole-exome sequencing was performed on tumors and matched blood samples. Somatic mutations and candidate neoantigens generated from these mutations were characterized. Neoantigen peptides were tested for the ability to activate lymphocytes from ipilimumab-treated patients. RESULTS Malignant melanoma exomes from 64 patients treated with CTLA-4 blockade were characterized with the use of massively parallel sequencing. A discovery set consisted of 11 patients who derived a long-term clinical benefit and 14 patients who derived a minimal benefit or no benefit. Mutational load was associated with the degree of clinical benefit (P=0.01) but alone was not sufficient to predict benefit. Using genomewide somatic neoepitope analysis and patient-specific HLA typing, we identified candidate tumor neoantigens for each patient. We elucidated a neoantigen landscape that is specifically present in tumors with a strong response to CTLA-4 blockade. We validated this signature in a second set of 39 patients with melanoma who were treated with anti-CTLA-4 antibodies. Predicted neoantigens activated T cells from the patients treated with ipilimumab. CONCLUSIONS These findings define a genetic basis for benefit from CTLA-4 blockade in melanoma and provide a rationale for examining exomes of patients for whom anti-CTLA-4 agents are being considered. (Funded by the Frederick Adler Fund and others.).


Science | 2016

Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade

Nicholas McGranahan; Andrew Furness; Rachel Rosenthal; Sofie Ramskov; Rikke Birgitte Lyngaa; Sunil Kumar Saini; Mariam Jamal-Hanjani; Gareth A. Wilson; Nicolai Juul Birkbak; Crispin Hiley; Thomas B.K. Watkins; Seema Shafi; Nirupa Murugaesu; Richard Mitter; Ayse U. Akarca; Joseph Linares; Teresa Marafioti; Jake Y. Henry; Eliezer M. Van Allen; Diana Miao; Bastian Schilling; Dirk Schadendorf; Levi A. Garraway; Vladimir Makarov; Naiyer A. Rizvi; Alexandra Snyder; Matthew D. Hellmann; Taha Merghoub; Jedd D. Wolchok; Sachet A. Shukla

The cellular ancestry of tumor antigens One contributing factor in antitumor immunity is the repertoire of neoantigens created by genetic mutations within tumor cells. Like the corresponding mutations, these neoantigens show intratumoral heterogeneity. Some are present in all tumor cells (clonal), and others are present in only a fraction of cells (subclonal). In a study of lung cancer and melanoma, McGranahan et al. found that a high burden of clonal tumor neoantigens correlated with improved patient survival, an increased presence of tumor-infiltrating lymphocytes, and a durable response to immunotherapy. Science, this issue p. 1463 Analysis of the cellular ancestry of tumor neoantigens can predict which are most likely to induce an immune response. As tumors grow, they acquire mutations, some of which create neoantigens that influence the response of patients to immune checkpoint inhibitors. We explored the impact of neoantigen intratumor heterogeneity (ITH) on antitumor immunity. Through integrated analysis of ITH and neoantigen burden, we demonstrate a relationship between clonal neoantigen burden and overall survival in primary lung adenocarcinomas. CD8+ tumor-infiltrating lymphocytes reactive to clonal neoantigens were identified in early-stage non–small cell lung cancer and expressed high levels of PD-1. Sensitivity to PD-1 and CTLA-4 blockade in patients with advanced NSCLC and melanoma was enhanced in tumors enriched for clonal neoantigens. T cells recognizing clonal neoantigens were detectable in patients with durable clinical benefit. Cytotoxic chemotherapy–induced subclonal neoantigens, contributing to an increased mutational load, were enriched in certain poor responders. These data suggest that neoantigen heterogeneity may influence immune surveillance and support therapeutic developments targeting clonal neoantigens.


Cell | 2015

Inhibiting DNA Methylation Causes an Interferon Response in Cancer via dsRNA Including Endogenous Retroviruses.

Katherine B. Chiappinelli; Pamela L. Strissel; Alexis Desrichard; Huili Li; Christine Henke; Benjamin Akman; Alexander Hein; Neal S. Rote; Leslie Cope; Alexandra Snyder; Vladimir Makarov; Sadna Budhu; Dennis J. Slamon; Jedd D. Wolchok; Drew M. Pardoll; Matthias W. Beckmann; Cynthia A. Zahnow; Taha Merghoub; Timothy A. Chan; Stephen B. Baylin; Reiner Strick

We show that DNA methyltransferase inhibitors (DNMTis) upregulate immune signaling in cancer through the viral defense pathway. In ovarian cancer (OC), DNMTis trigger cytosolic sensing of double-stranded RNA (dsRNA) causing a type I interferon response and apoptosis. Knocking down dsRNA sensors TLR3 and MAVS reduces this response 2-fold and blocking interferon beta or its receptor abrogates it. Upregulation of hypermethylated endogenous retrovirus (ERV) genes accompanies the response and ERV overexpression activates the response. Basal levels of ERV and viral defense gene expression significantly correlate in primary OC and the latter signature separates primary samples for multiple tumor types from The Cancer Genome Atlas into low versus high expression groups. In melanoma patients treated with an immune checkpoint therapy, high viral defense signature expression in tumors significantly associates with durable clinical response and DNMTi treatment sensitizes to anti-CTLA4 therapy in a pre-clinical melanoma model.We show that DNA methyltransferase inhibitors (DNMTis) upregulate immune signaling in cancer through the viral defense pathway. In ovarian cancer (OC), DNMTis trigger cytosolic sensing of double-stranded RNA (dsRNA) causing a type I interferon response and apoptosis. Knocking down dsRNA sensors TLR3 and MAVS reduces this response 2-fold and blocking interferon beta or its receptor abrogates it. Upregulation of hypermethylated endogenous retrovirus (ERV) genes accompanies the response and ERV overexpression activates the response. Basal levels of ERV and viral defense gene expression significantly correlate in primary OC and the latter signature separates primary samples for multiple tumor types from The Cancer Genome Atlas into low versus high expression groups. In melanoma patients treated with an immune checkpoint therapy, high viral defense signature expression in tumors significantly associates with durable clinical response and DNMTi treatment sensitizes to anti-CTLA4 therapy in a pre-clinical melanoma model.


JCO Precision Oncology | 2017

OncoKB: A Precision Oncology Knowledge Base

Debyani Chakravarty; Jianjiong Gao; Sarah Phillips; Ritika Kundra; Hongxin Zhang; Jiaojiao Wang; Julia E. Rudolph; Rona Yaeger; Tara Soumerai; Moriah H. Nissan; Matthew T. Chang; Sarat Chandarlapaty; Tiffany A. Traina; Paul K. Paik; Alan L. Ho; Feras M. Hantash; Andrew Grupe; Shrujal S. Baxi; Margaret K. Callahan; Alexandra Snyder; Ping Chi; Daniel C. Danila; Mrinal M. Gounder; James J. Harding; Matthew D. Hellmann; Gopa Iyer; Yelena Y. Janjigian; Thomas Kaley; Douglas A. Levine; Maeve Aine Lowery

PURPOSE With prospective clinical sequencing of tumors emerging as a mainstay in cancer care, there is an urgent need for a clinical support tool that distills the clinical implications associated with specific mutation events into a standardized and easily interpretable format. To this end, we developed OncoKB, an expert-guided precision oncology knowledge base. METHODS OncoKB annotates the biological and oncogenic effect and the prognostic and predictive significance of somatic molecular alterations. Potential treatment implications are stratified by the level of evidence that a specific molecular alteration is predictive of drug response based on US Food and Drug Administration (FDA) labeling, National Comprehensive Cancer Network (NCCN) guidelines, disease-focused expert group recommendations and the scientific literature. RESULTS To date, over 3000 unique mutations, fusions, and copy number alterations in 418 cancer-associated genes have been annotated. To test the utility of OncoKB, we annotated all genomic events in 5983 primary tumor samples in 19 cancer types. Forty-one percent of samples harbored at least one potentially actionable alteration, of which 7.5% were predictive of clinical benefit from a standard treatment. OncoKB annotations are available through a public web resource (http://oncokb.org/) and are also incorporated into the cBioPortal for Cancer Genomics to facilitate the interpretation of genomic alterations by physicians and researchers. CONCLUSION OncoKB, a comprehensive and curated precision oncology knowledge base, offers oncologists detailed, evidence-based information about individual somatic mutations and structural alterations present in patient tumors with the goal of supporting optimal treatment decisions.


Clinical Cancer Research | 2016

Cancer Neoantigens and Applications for Immunotherapy.

Alexis Desrichard; Alexandra Snyder; Timothy A. Chan

Recent advances in immune checkpoint blockade therapy have revolutionized the treatment of cancer. Tumor-specific antigens that are generated by somatic mutation, neoantigens, can influence patient response to immunotherapy and contribute to tumor shrinkage. Recent evidence demonstrating the success of checkpoint blockade immunotherapy in boosting T-cell reactivity against patient-specific neoantigens constitutes a strong rationale for the development of personalized vaccines against these nonself peptides. With the decreasing cost of next-generation sequencing, peptide manufacturing, and improvement of in silico prediction of peptide immunogenicity, it is increasingly important to evaluate the potential use of neoantigens in both diagnosis and treatment. Specifically, these neoantigens could be useful both as predictors of immune checkpoint blockade therapy response and/or incorporated in therapeutic vaccination strategies. Clin Cancer Res; 22(4); 807–12. ©2015 AACR.


The New England Journal of Medicine | 2015

Genetic basis for clinical response to CTLA-4 blockade.

Alexandra Snyder; Jedd D. Wolchok; Timothy A. Chan

To the Editor: Snyder et al. (Dec. 4 issue)1 state that in patients with melanoma who clinically benefit from blockade of cytotoxic T-lymphocyte antigen 4 (CTLA-4), the tetrapeptide sequences in tumor neoantigens were identical to those in known antigenic peptides in pathogens. The authors probably correctly interpret that this coincidence reflects cross-reactivity between cancer neoepitopes and relevant epitopes from the microbial counterparts. However, another explanation is possible. It could be that there was a positive selection in the thymus for rearranged T-cell receptors (TCRs) that preferentially recognize pathogen-encoded and major histocompatibility complex (MHC)–presented antigenic epitopes. Such a feature could have been sculpted by evolution in TCR variable genes and HLA genes. More information about these interpretations could be gained by knowing the serologic status of the patients with respect to the putatively cross-reacting microbes. For instance, it would be very interesting to ascertain whether the serum samples from patient CR9306 were positive for anti–hepatitis D virus antibodies. Negative serologic status does not completely exclude previous subclinical contact with the infectious agent but would certainly argue against crossreactivity as an explanation for these observations.


Cell | 2017

Heterogeneous Tumor-Immune Microenvironments among Differentially Growing Metastases in an Ovarian Cancer Patient

Alejandro Jiménez-Sánchez; Danish Memon; Stephane Pourpe; Harini Veeraraghavan; Yanyun Li; Hebert Alberto Vargas; Michael Gill; Kay J. Park; Oliver Zivanovic; Jason A. Konner; Jacob Ricca; Dmitriy Zamarin; Tyler Walther; Carol Aghajanian; Jedd D. Wolchok; Evis Sala; Taha Merghoub; Alexandra Snyder; Martin L. Miller

Summary We present an exceptional case of a patient with high-grade serous ovarian cancer, treated with multiple chemotherapy regimens, who exhibited regression of some metastatic lesions with concomitant progression of other lesions during a treatment-free period. Using immunogenomic approaches, we found that progressing metastases were characterized by immune cell exclusion, whereas regressing and stable metastases were infiltrated by CD8+ and CD4+ T cells and exhibited oligoclonal expansion of specific T cell subsets. We also detected CD8+ T cell reactivity against predicted neoepitopes after isolation of cells from a blood sample taken almost 3 years after the tumors were resected. These findings suggest that multiple distinct tumor immune microenvironments co-exist within a single individual and may explain in part the heterogeneous fates of metastatic lesions often observed in the clinic post-therapy. Video Abstract


Journal of Clinical Oncology | 2018

Molecular Determinants of Response to Anti-Programmed Cell Death (PD)-1 and Anti-Programmed Death-Ligand 1 (PD-L1) Blockade in Patients With Non-Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing.

Hira Rizvi; Francisco Sanchez-Vega; Konnor La; Walid K. Chatila; Philip Jonsson; Darragh Halpenny; Andrew J. Plodkowski; Niamh Long; Jennifer Sauter; Natasha Rekhtman; Travis J. Hollmann; Kurt A. Schalper; Justin F. Gainor; Ronglai Shen; Ai Ni; Kathryn Cecilia Arbour; Taha Merghoub; Jedd D. Wolchok; Alexandra Snyder; Jamie E. Chaft; Mark G. Kris; Charles M. Rudin; Nicholas D. Socci; Michael F. Berger; Barry S. Taylor; Ahmet Zehir; David B. Solit; Maria E. Arcila; Marc Ladanyi; Gregory J. Riely

Purpose Treatment of advanced non-small-cell lung cancer with immune checkpoint inhibitors (ICIs) is characterized by durable responses and improved survival in a subset of patients. Clinically available tools to optimize use of ICIs and understand the molecular determinants of response are needed. Targeted next-generation sequencing (NGS) is increasingly routine, but its role in identifying predictors of response to ICIs is not known. Methods Detailed clinical annotation and response data were collected for patients with advanced non-small-cell lung cancer treated with anti-programmed death-1 or anti-programmed death-ligand 1 [anti-programmed cell death (PD)-1] therapy and profiled by targeted NGS (MSK-IMPACT; n = 240). Efficacy was assessed by Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1, and durable clinical benefit (DCB) was defined as partial response/stable disease that lasted > 6 months. Tumor mutation burden (TMB), fraction of copy number-altered genome, and gene alterations were compared among patients with DCB and no durable benefit (NDB). Whole-exome sequencing (WES) was performed for 49 patients to compare quantification of TMB by targeted NGS versus WES. Results Estimates of TMB by targeted NGS correlated well with WES (ρ = 0.86; P < .001). TMB was greater in patients with DCB than with NDB ( P = .006). DCB was more common, and progression-free survival was longer in patients at increasing thresholds above versus below the 50th percentile of TMB (38.6% v 25.1%; P < .001; hazard ratio, 1.38; P = .024). The fraction of copy number-altered genome was highest in those with NDB. Variants in EGFR and STK11 associated with a lack of benefit. TMB and PD-L1 expression were independent variables, and a composite of TMB plus PD-L1 further enriched for benefit to ICIs. Conclusion Targeted NGS accurately estimates TMB and elevated TMB further improved likelihood of benefit to ICIs. TMB did not correlate with PD-L1 expression; both variables had similar predictive capacity. The incorporation of both TMB and PD-L1 expression into multivariable predictive models should result in greater predictive power.


Clinical Radiology | 2017

Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging

Evis Sala; E. Mema; Y. Himoto; Harini Veeraraghavan; James D. Brenton; Alexandra Snyder; Britta Weigelt; Hebert Alberto Vargas

Tumour heterogeneity in cancers has been observed at the histological and genetic levels, and increased levels of intra-tumour genetic heterogeneity have been reported to be associated with adverse clinical outcomes. This review provides an overview of radiomics, radiogenomics, and habitat imaging, and examines the use of these newly emergent fields in assessing tumour heterogeneity and its implications. It reviews the potential value of radiomics and radiogenomics in assisting in the diagnosis of cancer disease and determining cancer aggressiveness. This review discusses how radiogenomic analysis can be further used to guide treatment therapy for individual tumours by predicting drug response and potential therapy resistance and examines its role in developing radiomics as biomarkers of oncological outcomes. Lastly, it provides an overview of the obstacles in these emergent fields today including reproducibility, need for validation, imaging analysis standardisation, data sharing and clinical translatability and offers potential solutions to these challenges towards the realisation of precision oncology.

Collaboration


Dive into the Alexandra Snyder's collaboration.

Top Co-Authors

Avatar

Jedd D. Wolchok

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Taha Merghoub

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Timothy A. Chan

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Matthew D. Hellmann

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Vladimir Makarov

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Arun Ahuja

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Jeff Hammerbacher

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Alexis Desrichard

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Samuel Funt

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Dean F. Bajorin

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge