Alexandra V. Turchyn
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexandra V. Turchyn.
Science | 2009
Jill A. Mikucki; Ann Pearson; David T. Johnston; Alexandra V. Turchyn; James Farquhar; Daniel P. Schrag; Ariel D. Anbar; John C. Priscu; Peter A. Lee
An active microbial assemblage cycles sulfur in a sulfate-rich, ancient marine brine beneath Taylor Glacier, an outlet glacier of the East Antarctic Ice Sheet, with Fe(III) serving as the terminal electron acceptor. Isotopic measurements of sulfate, water, carbonate, and ferrous iron and functional gene analyses of adenosine 5′-phosphosulfate reductase imply that a microbial consortium facilitates a catalytic sulfur cycle. These metabolic pathways result from a limited organic carbon supply because of the absence of contemporary photosynthesis, yielding a subglacial ferrous brine that is anoxic but not sulfidic. Coupled biogeochemical processes below the glacier enable subglacial microbes to grow in extended isolation, demonstrating how analogous organic-starved systems, such as Neoproterozoic oceans, accumulated Fe(II) despite the presence of an active sulfur cycle.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Jonathan L. Payne; Alexandra V. Turchyn; Adina Paytan; Donald J. DePaolo; Daniel J. Lehrmann; Meiyi Yu; Jiayong Wei
The end-Permian mass extinction horizon is marked by an abrupt shift in style of carbonate sedimentation and a negative excursion in the carbon isotope (δ13C) composition of carbonate minerals. Several extinction scenarios consistent with these observations have been put forward. Secular variation in the calcium isotope (δ44/40Ca) composition of marine sediments provides a tool for distinguishing among these possibilities and thereby constraining the causes of mass extinction. Here we report δ44/40Ca across the Permian-Triassic boundary from marine limestone in south China. The δ44/40Ca exhibits a transient negative excursion of ∼0.3‰ over a few hundred thousand years or less, which we interpret to reflect a change in the global δ44/40Ca composition of seawater. CO2-driven ocean acidification best explains the coincidence of the δ44/40Ca excursion with negative excursions in the δ13C of carbonates and organic matter and the preferential extinction of heavily calcified marine animals. Calcium isotope constraints on carbon cycle calculations suggest that the average δ13C of CO2 released was heavier than -28‰ and more likely near -15‰; these values indicate a source containing substantial amounts of mantle- or carbonate-derived carbon. Collectively, the results point toward Siberian Trap volcanism as the trigger of mass extinction.
Molecular Systems Biology | 2014
Markus A. Keller; Alexandra V. Turchyn; Markus Ralser
The reaction sequences of central metabolism, glycolysis and the pentose phosphate pathway provide essential precursors for nucleic acids, amino acids and lipids. However, their evolutionary origins are not yet understood. Here, we provide evidence that their structure could have been fundamentally shaped by the general chemical environments in earths earliest oceans. We reconstructed potential scenarios for oceans of the prebiotic Archean based on the composition of early sediments. We report that the resultant reaction milieu catalyses the interconversion of metabolites that in modern organisms constitute glycolysis and the pentose phosphate pathway. The 29 observed reactions include the formation and/or interconversion of glucose, pyruvate, the nucleic acid precursor ribose‐5‐phosphate and the amino acid precursor erythrose‐4‐phosphate, antedating reactions sequences similar to that used by the metabolic pathways. Moreover, the Archean ocean mimetic increased the stability of the phosphorylated intermediates and accelerated the rate of intermediate reactions and pyruvate production. The catalytic capacity of the reconstructed ocean milieu was attributable to its metal content. The reactions were particularly sensitive to ferrous iron Fe(II), which is understood to have had high concentrations in the Archean oceans. These observations reveal that reaction sequences that constitute central carbon metabolism could have been constrained by the iron‐rich oceanic environment of the early Archean. The origin of metabolism could thus date back to the prebiotic world.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Orit Sivan; Gilad Antler; Alexandra V. Turchyn; Jeffrey J. Marlow; Victoria J. Orphan
Significance Anaerobic oxidation of methane (AOM) coupled to sulfate reduction has been shown to consume up to 90% of the greenhouse gas methane produced within the subseafloor environment; however, the mechanism of this process has remained enigmatic. Here, we provide geochemical evidence based on sulfur, oxygen, and carbon isotopes for the involvement of iron oxides in sulfate-driven AOM in methane seeps. Our results suggest that, beyond the function of iron as nutrient, the presence of iron oxides stimulates sulfate-driven AOM to a greater extent than in sediments with low concentrations of iron oxides. The isotope analyses further indicate that sulfate reduction in methane seep habitats differs than sulfate reduction in diffusive profiles in and above the sulfate–methane transition zone. Seep sediments are dominated by intensive microbial sulfate reduction coupled to the anaerobic oxidation of methane (AOM). Through geochemical measurements of incubation experiments with methane seep sediments collected from Hydrate Ridge, we provide insight into the role of iron oxides in sulfate-driven AOM. Seep sediments incubated with 13C-labeled methane showed co-occurring sulfate reduction, AOM, and methanogenesis. The isotope fractionation factors for sulfur and oxygen isotopes in sulfate were about 40‰ and 22‰, respectively, reinforcing the difference between microbial sulfate reduction in methane seeps versus other sedimentary environments (for example, sulfur isotope fractionation above 60‰ in sulfate reduction coupled to organic carbon oxidation or in diffusive sedimentary sulfate–methane transition zone). The addition of hematite to these microcosm experiments resulted in significant microbial iron reduction as well as enhancing sulfate-driven AOM. The magnitude of the isotope fractionation of sulfur and oxygen isotopes in sulfate from these incubations was lowered by about 50%, indicating the involvement of iron oxides during sulfate reduction in methane seeps. The similar relative change between the oxygen versus sulfur isotopes of sulfate in all experiments (with and without hematite addition) suggests that oxidized forms of iron, naturally present in the sediment incubations, were involved in sulfate reduction, with hematite addition increasing the sulfate recycling or the activity of sulfur-cycling microorganisms by about 40%. These results highlight a role for natural iron oxides during bacterial sulfate reduction in methane seeps not only as nutrient but also as stimulator of sulfur recycling.
Proceedings of the National Academy of Sciences of the United States of America | 2015
David J. Lea-Smith; Steven J. Biller; Matthew P. Davey; Charles A. R. Cotton; Blanca Perez Sepulveda; Alexandra V. Turchyn; David J. Scanlan; Alison G. Smith; Sallie W. Chisholm; Christopher J. Howe
Significance A number of organisms synthesize hydrocarbons, but the scale at which this occurs in the environment is unknown. Here, we provide the first global estimates of hydrocarbon production by the two most abundant cyanobacteria on Earth, Prochlorococcus and Synechococcus. We suggest that these organisms represent a significant and widespread source of hydrocarbons to the world’s oceans, which in turn may sustain populations of obligate hydrocarbon-degrading bacteria known to be important in consuming anthropogenic oil spills. Our study demonstrates the role cyanobacteria play in the ocean ‟hydrocarbon cycle” and reveals the massive scale of this process. The widespread distribution of cyanobacteria and hydrocarbon-degrading bacteria in freshwater, marine, and terrestrial environments suggests the hydrocarbon cycle is pervasive in many natural ecosystems. Hydrocarbons are ubiquitous in the ocean, where alkanes such as pentadecane and heptadecane can be found even in waters minimally polluted with crude oil. Populations of hydrocarbon-degrading bacteria, which are responsible for the turnover of these compounds, are also found throughout marine systems, including in unpolluted waters. These observations suggest the existence of an unknown and widespread source of hydrocarbons in the oceans. Here, we report that strains of the two most abundant marine cyanobacteria, Prochlorococcus and Synechococcus, produce and accumulate hydrocarbons, predominantly C15 and C17 alkanes, between 0.022 and 0.368% of dry cell weight. Based on global population sizes and turnover rates, we estimate that these species have the capacity to produce 2–540 pg alkanes per mL per day, which translates into a global ocean yield of ∼308–771 million tons of hydrocarbons annually. We also demonstrate that both obligate and facultative marine hydrocarbon-degrading bacteria can consume cyanobacterial alkanes, which likely prevents these hydrocarbons from accumulating in the environment. Our findings implicate cyanobacteria and hydrocarbon degraders as key players in a notable internal hydrocarbon cycle within the upper ocean, where alkanes are continually produced and subsequently consumed within days. Furthermore we show that cyanobacterial alkane production is likely sufficient to sustain populations of hydrocarbon-degrading bacteria, whose abundances can rapidly expand upon localized release of crude oil from natural seepage and human activities.
Geobiology | 2014
Naama Avrahamov; Gilad Antler; Yoseph Yechieli; Ittai Gavrieli; S. B. Joye; M. Saxton; Alexandra V. Turchyn; Orit Sivan
Geochemical and microbial evidence points to anaerobic oxidation of methane (AOM) likely coupled with bacterial sulfate reduction in the hypersaline groundwater of the Dead Sea (DS) alluvial aquifer. Groundwater was sampled from nine boreholes drilled along the Arugot alluvial fan next to the DS. The groundwater samples were highly saline (up to 6300 mm chlorine), anoxic, and contained methane. A mass balance calculation demonstrates that the very low δ13CDIC in this groundwater is due to anaerobic methane oxidation. Sulfate depletion coincident with isotope enrichment of sulfur and oxygen isotopes in the sulfate suggests that sulfate reduction is associated with this AOM. DNA extraction and 16S amplicon sequencing were used to explore the microbial community present and were found to be microbial composition indicative of bacterial sulfate reducers associated with anaerobic methanotrophic archaea (ANME) driving AOM. The net sulfate reduction seems to be primarily controlled by the salinity and the available methane and is substantially lower as salinity increases (2.5 mm sulfate removal at 3000 mm chlorine but only 0.5 mm sulfate removal at 6300 mm chlorine). Low overall sulfur isotope fractionation observed (34ε = 17 ± 3.5‰) hints at high rates of sulfate reduction, as has been previously suggested for sulfate reduction coupled with methane oxidation. The new results demonstrate the presence of sulfate-driven AOM in terrestrial hypersaline systems and expand our understanding of how microbial life is sustained under the challenging conditions of an extremely hypersaline environment.
Geology | 2015
Gilad Antler; Alexandra V. Turchyn; Barak Herut; Orit Sivan
The largest reservoir of the powerful greenhouse gas methane is in marine sediments, and catastrophic release of this methane has been invoked to explain climate perturbations throughout Earth history. Marine methane oxidation is mainly coupled anaerobically to microbial sulfate reduction, which both limits and controls the release of methane from this sedimentary reservoir to the rest of Earth’s surface. Methane can be transported within the pore space of marine sediments either via diffusion or as bubbles. When methane travels in bubbles, these bubbles often are not completely oxidized and reach the overlying water where the methane emerges from the sediment in cold seeps. Although paleo–cold seeps can be identified by geological features such as carbonate mounds, a geochemical signature for cold seeps remains elusive. We demonstrate, using the sulfur and oxygen isotope composition of sulfate, that a unique isotopic signature emerges during microbial sulfate reduction coupled to methane oxidation in bubbling cold seeps. This isotope signature differs from that when sulfate is reduced by either organic matter oxidation or by the slower, diffusive flux of methane within marine sediments. We also show, through a comparison with the literature, that this unique isotope fingerprint is preserved in the rock record in authigenic buildups of barite associated with methane cold seeps.
Science | 2017
Emily Mason; Marie Edmonds; Alexandra V. Turchyn
Volcanoes find a new carbon platform The geological carbon cycle assumes that carbon is emitted by volcanic eruptions and removed through various forms of burial. Mason et al. found that not all volcanic eruptions have the same source for carbon in their volcanic gas. Arc volcanic activity appears to harvest carbon from old carbonate platforms, which results in a massive difference in the isotopic signature of the carbon emitted during eruption. This discovery requires revision of the global carbon cycle, decreasing the amount of organic carbon believed to be being buried. Science, this issue p. 290 A revision in the carbon isotope budget from the global volcanic arc gas output requires less organic carbon burial. The flux of carbon into and out of Earth’s surface environment has implications for Earth’s climate and habitability. We compiled a global data set for carbon and helium isotopes from volcanic arcs and demonstrated that the carbon isotope composition of mean global volcanic gas is considerably heavier, at –3.8 to –4.6 per mil (‰), than the canonical mid-ocean ridge basalt value of –6.0‰. The largest volcanic emitters outgas carbon with higher δ13C and are located in mature continental arcs that have accreted carbonate platforms, indicating that reworking of crustal limestone is an important source of volcanic carbon. The fractional burial of organic carbon is lower than traditionally determined from a global carbon isotope mass balance and may have varied over geological time, modulated by supercontinent formation and breakup.
Science Advances | 2016
Markus A. Keller; Andre Zylstra; Cecilia Castro; Alexandra V. Turchyn; Julian L. Griffin; Markus Ralser
Iron and pH dependency enable metabolism-like attributes in a network of primordially plausible chemical reactions. Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have given rise to the origin of glycolysis and the PPP during early evolution. Using nuclear magnetic resonance spectroscopy and high-content metabolomics that allowed us to measure several thousand reaction mixtures, we experimentally address the chemical logic of a metabolism-like network constituted from these non-enzymatic reactions. Fe(II), the dominant transition metal component of Archean oceanic sediments, has binding affinity toward metabolic sugar phosphates and drives metabolism-like reactivity acting as both catalyst and cosubstrate. Iron and pH dependencies determine a metabolism-like network topology and comediate reaction rates over several orders of magnitude so that the network adopts conditional activity. Alkaline pH triggered the activity of the non-enzymatic PPP pendant, whereas gentle acidic or neutral conditions favored non-enzymatic glycolytic reactions. Fe(II)-sensitive glycolytic and PPP-like reactions thus form a chemical network mimicking structural features of extant carbon metabolism, including topology, pH dependency, and conditional reactivity. Chemical networks that obtain structure and catalysis on the basis of transition metals found in Archean sediments are hence plausible direct precursors of cellular metabolic networks.
Science | 2018
C. L. Blättler; Mark W. Claire; Anthony R. Prave; Kalle Kirsimäe; J.A. Higgins; Pavel V. Medvedev; Alexander E. Romashkin; Dmitry V. Rychanchik; Aubrey L. Zerkle; K. Paiste; T. Kreitsmann; I. L. Millar; J. A. Hayles; Huiming Bao; Alexandra V. Turchyn; M. R. Warke; Aivo Lepland
A strongly oxidizing Paleoproterozoic era Two billion years ago, marine sulfate concentrations were around one-third as high as modern ones, constituting an oxidizing capacity equivalent to more than 20% of that of the modern ocean-atmosphere system. Blättler et al. found this by analyzing a remarkable evaporite succession more than 1 billion years older than the oldest comparable deposit discovered to date. These quantitative results, for a time when only more qualitative information was previously available, provide a constraint on the magnitude and timing of early Earths response to the Great Oxidation Event 2.3 billion years ago. Science, this issue p. 320 The oxidizing capacity of the ocean was one-fifth of modern values in the Paleoproterozoic era. Major changes in atmospheric and ocean chemistry occurred in the Paleoproterozoic era (2.5 to 1.6 billion years ago). Increasing oxidation dramatically changed Earth’s surface, but few quantitative constraints exist on this important transition. This study describes the sedimentology, mineralogy, and geochemistry of a 2-billion-year-old, ~800-meter-thick evaporite succession from the Onega Basin in Russian Karelia. The deposit consists of a basal unit dominated by halite (~100 meters) followed by units dominated by anhydrite-magnesite (~500 meters) and dolomite-magnesite (~200 meters). The evaporite minerals robustly constrain marine sulfate concentrations to at least 10 millimoles per kilogram of water, representing an oxidant reservoir equivalent to more than 20% of the modern ocean-atmosphere oxidizing capacity. These results show that substantial amounts of surface oxidant accumulated during this critical transition in Earth’s oxygenation.