Alexandra Vaisman
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexandra Vaisman.
Journal of Experimental Medicine | 2005
Teresa M. Wilson; Alexandra Vaisman; Stella A. Martomo; Patsa Sullivan; Li Lan; Fumio Hanaoka; Akira Yasui; Roger Woodgate; Patricia J. Gearhart
Activation-induced cytidine deaminase deaminates cytosine to uracil (dU) in DNA, which leads to mutations at C:G basepairs in immunoglobulin genes during somatic hypermutation. The mechanism that generates mutations at A:T basepairs, however, remains unclear. It appears to require the MSH2–MSH6 mismatch repair heterodimer and DNA polymerase (pol) η, as mutations of A:T are decreased in mice and humans lacking these proteins. Here, we demonstrate that these proteins interact physically and functionally. First, we show that MSH2–MSH6 binds to a U:G mismatch but not to other DNA intermediates produced during base excision repair of dUs, including an abasic site and a deoxyribose phosphate group. Second, MSH2 binds to pol η in solution, and endogenous MSH2 associates with the pol in cell extracts. Third, MSH2–MSH6 stimulates the catalytic activity of pol η in vitro. These observations suggest that the interaction between MSH2–MSH6 and DNA pol η stimulates synthesis of mutations at bases located downstream of the initial dU lesion, including A:T pairs.
The EMBO Journal | 2005
Alexandra Vaisman; Hong Ling; Roger Woodgate; Wei Yang
We report the crystal structures of a translesion DNA polymerase, Dpo4, complexed with a matched or mismatched incoming nucleotide and with a pyrophosphate product after misincorporation. These structures suggest two mechanisms by which Dpo4 may reject a wrong incoming nucleotide with its preformed and open active site. First, a mismatched replicating base pair leads to poor base stacking and alignment of the metal ions and as a consequence, inhibits incorporation. By replacing Mg2+ with Mn2+, which has a relaxed coordination requirement and tolerates misalignment, the catalytic efficiency of misincorporation increases dramatically. Mn2+ also enhances translesion synthesis by Dpo4. Subtle conformational changes that lead to the proper metal ion coordination may, therefore, be a key step in catalysis. Second, the slow release of pyrophosphate may increase the fidelity of Dpo4 by stalling mispaired primer extension and promoting pyrophosphorolysis that reverses the polymerization reaction. Indeed, Dpo4 has robust pyrophosphorolysis activity and degrades the primer strand in the presence of pyrophosphate. The correct incoming nucleotide allows DNA synthesis to overcome pyrophosphorolysis, but an incorrect incoming nucleotide does not.
Nature Biotechnology | 2007
Marc d'Abbadie; Michael Hofreiter; Alexandra Vaisman; David Loakes; Didier Gasparutto; Jean Cadet; Roger Woodgate; Svante Pääbo; Philipp Holliger
In the absence of repair, lesions accumulate in DNA. Thus, DNA persisting in specimens of paleontological, archaeological or forensic interest is inevitably damaged. We describe a strategy for the recovery of genetic information from damaged DNA. By molecular breeding of polymerase genes from the genus Thermus (Taq (Thermus aquaticus), Tth (Thermus thermophilus) and Tfl (Thermus flavus)) and compartmentalized self-replication selection, we have evolved polymerases that can extend single, double and even quadruple mismatches, process non-canonical primer-template duplexes and bypass lesions found in ancient DNA, such as hydantoins and abasic sites. Applied to the PCR amplification of 47,000–60,000-year-old cave bear DNA, these outperformed Taq DNA polymerase by up to 150% and yielded amplification products at sample dilutions at which Taq did not. Our results demonstrate that engineered polymerases can expand the recovery of genetic information from Pleistocene specimens and may benefit genetic analysis in paleontology, archeology and forensic medicine.
Nature Immunology | 2011
Robert W. Maul; Huseyin Saribasak; Stella A. Martomo; Rhonda L. McClure; William W. Yang; Alexandra Vaisman; Hillary Selle Gramlich; David G. Schatz; Roger Woodgate; David M. Wilson; Patricia J. Gearhart
Activation-induced deaminase (AID) initiates diversity of immunoglobulin genes through deamination of cytosine to uracil. Two opposing models have been proposed for the deamination of DNA or RNA by AID. Although most data support DNA deamination, there is no physical evidence of uracil residues in immunoglobulin genes. Here we demonstrate their presence by determining the sensitivity of DNA to digestion with uracil DNA glycosylase (UNG) and abasic endonuclease. Using several methods of detection, we identified uracil residues in the variable and switch regions. Uracil residues were generated within 24 h of B cell stimulation, were present on both DNA strands and were found to replace mainly cytosine bases. Our data provide direct evidence for the model that AID functions by deaminating cytosine residues in DNA.
The EMBO Journal | 2001
Alexandra Vaisman; Roger Woodgate
DNA polymerase ι (polι) is a distributive error‐prone enzyme that can incorporate nucleotides opposite a variety of DNA lesions. Further elongation is, however, either substantially inhibited or completely abolished. Here, we provide evidence that polι can facilitate the efficient bypass of uracil and its derivatives as well as oxidized cytosine and guanine residues. The fidelity of translesion replication depends upon the lesion encountered. Correct nucleotides were inserted preferentially opposite 7,8‐dihydro‐8‐oxoguanine (8‐oxoG) and 5‐hydroxycytosine (5‐OHC). However, when bypassing uracil, 5‐hydroxyuracil (5‐OHU) or 5,6‐dihydrouracil (5,6‐DHU), polι inserted T and G with a 4‐ to 26‐fold preference over the Watson—Crick base, A. While the T:U, T:5‐OHU and T:5,6‐DHU mispairs were extended poorly, the G:U, G:5‐OHU and G:5,6‐DHU mispairs were extended with equal or greater efficiency than the correctly paired primer termini. Thus, polι‐dependent misinsertion of G opposite uracil and its derivatives may actually provide a mechanism whereby mammalian cells can decrease the mutagenic potential of lesions formed via the deamination of cytosine.
Cancer Chemotherapy and Pharmacology | 1996
Dean A. Delmastro; Jibin Li; Alexandra Vaisman; Michael Solle; Stephen G. Chaney
Abstract Purpose: DNA damage-inducible genes, such as gadd153, gadd45, p21 and c-jun, have previously been shown to be induced by the chemotherapeutic agent cisplatin. One of these genes, gadd153, has previously been reported to be differentially expressed in cisplatin-resistant cell lines and, therefore, to be a potential prognostic indicator for tumor response to cisplatin-based chemotherapy. It is not currently known whether such damage-inducible genes are turned on by the DNA damage itself (e.g. by the formation of Pt-DNA adducts) or by the downstream biological consequences of that damage. It is also not known whether the increased expression of these DNA-damage-inducible genes is related to immediate protective responses such as DNA repair or to more delayed responses such as cell cycle arrest or apoptosis. These experiments were initiated to characterize more fully the nature of the DNA damage-inducible response to cisplatin treatment and to determine whether any of these genes might be useful prognostic indicators of tumor response to cisplatin chemotherapy. Methods: The dose-response and time-course for the induction of the DNA damage-inducible genes gadd153, gadd45, p21 and c-jun were examined by Northern analysis in the human ovarian carcinoma cell line 2008 and its resistant subclone C13* following treatment with platinum anticancer agents. The extent of gene expression was correlated with cytotoxicity determined by growth inhibition assay, Pt-DNA adducts determined by atomic absorption spectrometry and inhibition of DNA synthesis determined by 3H-thymidine incorporation. Results: All four genes were induced maximally in both sensitive and resistant cell lines at lethal cisplatin doses (≥ ID90). Induction was maximal between 24 and 48 h following exposure to the drug for all genes except c-jun which was induced by 6 h. At 24 h following cisplatin treatment the overall levels of gadd153 were less in the resistant C13* cell line than in the parental 2008 cell line, while those of gadd45 were greater in C13* than in 2008. Maximal expression of p21 and c-jun was not significantly different in the two cell lines. The dose-response of these genes correlated with the cytotoxicity of cisplatin and the inhibition of DNA synthesis by cisplatin, rather than to the actual levels of Pt-DNA adducts. The more cytotoxic platinum analog, ormaplatin, also induced gadd153 and its induction was also based on cytotoxicity. Conclusion: These results suggest that the regulation of gadd153 and gadd45 expression occurs thorough separate pathways in the 2008 and C13* cell lines. The DNA damage-inducible gene response for all four damage-inducible genes tested appeared to be more directly correlated with downstream biologic effects of cisplatin damage than with actual Pt-DNA adduct levels. The time-course and dose-response for induction of these genes was more consistent with delayed responses such as apoptosis rather than more immediate responses such as DNA repair. Finally, these results strengthen previous suggestions that the expression of gadd153, and possibly other DNA damage-inducible genes, may be useful indicators of tumor response to cisplatin-based chemotherapy.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Christopher Cozens; Vitor B. Pinheiro; Alexandra Vaisman; Roger Woodgate; Philipp Holliger
DNA polymerase substrate specificity is fundamental to genome integrity and to polymerase applications in biotechnology. In the current paradigm, active site geometry is the main site of specificity control. Here, we describe the discovery of a distinct specificity checkpoint located over 25 Å from the active site in the polymerase thumb subdomain. In Tgo, the replicative DNA polymerase from Thermococcus gorgonarius, we identify a single mutation (E664K) within this region that enables translesion synthesis across a template abasic site or a cyclobutane thymidine dimer. In conjunction with a classic “steric-gate” mutation (Y409G) in the active site, E664K transforms Tgo DNA polymerase into an RNA polymerase capable of synthesizing RNAs up to 1.7 kb long as well as fully pseudouridine-, 5-methyl-C–, 2′-fluoro–, or 2′-azido–modified RNAs primed from a wide range of primer chemistries comprising DNA, RNA, locked nucleic acid (LNA), or 2′O-methyl–DNA. We find that E664K enables RNA synthesis by selectively increasing polymerase affinity for the noncognate RNA/DNA duplex as well as lowering the Km for ribonucleotide triphosphate incorporation. This gatekeeper mutation therefore identifies a key missing step in the adaptive path from DNA to RNA polymerases and defines a previously unknown postsynthetic determinant of polymerase substrate specificity with implications for the synthesis and replication of noncognate nucleic acid polymers.
Journal of Inorganic Biochemistry | 1999
Stephen G. Chaney; Alexandra Vaisman
Cell lines with resistance to cisplatin and carboplatin often retain sensitivity to platinum complexes with different carrier ligands (e.g., oxaliplatin and JM216). HeLa cell extracts were shown to excise cisplatin, oxaliplatin, and JM216 adducts with equal efficiency, suggesting that nucleotide excision repair does not contribute to the carrier-ligand specificity of platinum resistance. We have shown previously that the extent of replicative bypass in vivo is influenced by the carrier ligand of the platinum adducts. The specificity of replicative bypass may be determined by the DNA polymerase complexes that catalyze translesion synthesis past Pt-DNA adducts, by the mismatch-repair system that removes newly synthesized DNA opposite Pt-DNA adducts, and/or by DNA damage-recognition proteins that bind to the Pt-DNA adducts and block translesion synthesis. Primer extension on DNA templates containing site-specifically placed cisplatin, oxaliplatin, or JM216 Pt-GG adducts revealed that the eukaryotic DNA polymerases beta, zeta, gamma and HIV-1 RT had a similar specificity for translesion synthesis past Pt-DNA adducts (oxaliplatin > or = cisplatin > JM216). In addition, defects in the mismatch-repair proteins hMSH6 and hMLH1 led to increased replicative bypass of cisplatin adducts, but not of oxaliplatin adducts. Finally, primer extension assays performed in the presence of HMG1, which is known to recognize cisplatin-damaged DNA, revealed that inhibition of translesion synthesis by HMG1 also depended on the carrier ligand of the Pt-DNA adduct (cisplatin > oxaliplatin = JM216). These studies show that DNA polymerases, the mismatch-repair system and damage-recognition proteins can all impart specificity to replicative bypass of Pt-DNA adducts. Replicative bypass, in turn, may influence the carrier-ligand specificity of resistance.
Cytometry | 1997
Alexandra Vaisman; Maria Varchenko; Isil Said; Stephen G. Chaney
The possible correlation between alterations in cytokinetic response to cisplatin (CP) treatment and drug resistance in human ovarian carcinoma cell lines was examined. Using dual parameter flow cytometry, we performed detailed time-course and dose-response analysis of cell cycle modifications in the parental A2780 and resistant A2780/CP cells exposed to CP. The data suggested that drug treatment resulted in similar types of cell cycle alterations in cells with different CP sensitivity. Rapid normalization of the cytokinetic pattern in both cell lines at low doses of CP was observed. At higher drug concentrations reversible S phase delay predominated, accompanied by blocks in both G1/S and G2/M and followed by complete normalization of cytokinetic patterns in the surviving cells. CP treatment by lethal doses resulted in almost complete S phase block. The surviving cells at 72 h accumulated in G2 phase. CP-induced cell cycle perturbations, among which the most pronounced were alterations in the S phase populations, correlated with the level of DNA damage, but not with cell survival in these cell lines. However, at identical levels of DNA damage, the resistant A2780/CP cell line demonstrated decreased p53 induction and decreased apoptosis compared to the parental cell line. Thus, at equivalent levels of DNA damage, resistance in this model system correlated with a diminished p53-dependent apoptotic pathway rather than with differences in cell cycle response.
Nucleic Acids Research | 2011
Claudia Baar; Marc d’Abbadie; Alexandra Vaisman; Mercedes E. Arana; Michael Hofreiter; Roger Woodgate; Thomas A. Kunkel; Philipp Holliger
Potent inhibitors limit the use of PCR assays in a wide spectrum of specimens. Here, we describe the engineering of polymerases with a broad resistance to complex environmental inhibitors using molecular breeding of eight different polymerase orthologues from the genus Thermus and directed evolution by CSR in the presence of inhibitors. Selecting for resistance to the inhibitory effects of Neomylodon bone powder, we isolated 2D9, a chimeric polymerase comprising sequence elements derived from DNA polymerases from Thermus aquaticus, Thermus oshimai, Thermus thermophilus and Thermus brockianus. 2D9 displayed a striking resistance to a broad spectrum of complex inhibitors of highly divergent composition including humic acid, bone dust, coprolite, peat extract, clay-rich soil, cave sediment and tar. The selected polymerase promises to have utility in PCR-based applications in a wide range of fields including palaeobiology, archaeology, conservation biology, forensic and historic medicine.