Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandre Abhervé is active.

Publication


Featured researches published by Alexandre Abhervé.


Inorganic Chemistry | 2013

A Family of Layered Chiral Porous Magnets Exhibiting Tunable Ordering Temperatures

Matteo Atzori; Samia Benmansour; Guillermo Mínguez Espallargas; Miguel Clemente-León; Alexandre Abhervé; Patricia Gómez-Claramunt; Eugenio Coronado; Flavia Artizzu; Elisa Sessini; Paola Deplano; Angela Serpe; Maria Laura Mercuri; Carlos J. Gómez García

A simple change of the substituents in the bridging ligand allows tuning of the ordering temperatures, Tc, in the new family of layered chiral magnets A[M(II)M(III)(X2An)3]·G (A = [(H3O)(phz)3](+) (phz = phenazine) or NBu4(+); X2An(2-) = C6O4X2(2-) = 2,5-dihydroxy-1,4-benzoquinone derivative dianion, with M(III) = Cr, Fe; M(II) = Mn, Fe, Co, etc.; X = Cl, Br, I, H; G = water or acetone). Depending on the nature of X, an increase in Tc from ca. 5.5 to 6.3, 8.2, and 11.0 K (for X = Cl, Br, I, and H, respectively) is observed in the MnCr derivative. Furthermore, the presence of the chiral cation [(H3O)(phz)3](+), formed by the association of a hydronium ion with three phenazine molecules, leads to a chiral structure where the Δ-[(H3O)(phz)3](+) cations are always located below the Δ-[Cr(Cl2An)3](3-) centers, leading to a very unusual localization of both kinds of metals (Cr and Mn) and to an eclipsed disposition of the layers. This eclipsed disposition generates hexagonal channels with a void volume of ca. 20% where guest molecules (acetone and water) can be reversibly absorbed. Here we present the structural and magnetic characterization of this new family of anilato-based molecular magnets.


Inorganic Chemistry | 2014

One-dimensional and two-dimensional anilate-based magnets with inserted spin-crossover complexes.

Alexandre Abhervé; Miguel Clemente-León; Eugenio Coronado; Carlos J. Gómez-García; Martin Verneret

The syntheses, structures, and magnetic properties of a family of bimetallic anilate-based compounds with inserted spin-crossover cationic complexes are reported. The structures of 1-4 present a two-dimensional anionic network formed by Mn(II) and Cr(III) ions linked through anilate ligands with inserted [Fe(III)(sal2-trien)](+) (1), [Fe(III)(4-OH-sal2-trien)](+) (2), [Fe(III)(sal2-epe)](+) (3), or [Fe(III)(5-Cl-sal2-trien)](+) (4) complexes. The structure of 5 is formed by anionic [Mn(II)Cl2Cr(III)(Cl2An)3](3-) chains surrounded by [Fe(II)(tren(imid)3)](2+), Cl(-), and solvent molecules. The magnetic properties indicate that 1-4 undergo a long-range ferrimagnetic ordering at ca. 10 K. On the other hand, the inserted Fe(III) cations remain in the low-spin (in 4) or high-spin state (in 1, 2, and 3). In the case of 5, half of the inserted Fe(II) cations undergo a complete and gradual spin crossover from 280 to 90 K that coexists with a magnetic ordering below 2.5 K.


ACS Applied Materials & Interfaces | 2017

Nanosheets of Two-Dimensional Magnetic and Conducting Fe(II)/Fe(III) Mixed-Valence Metal–Organic Frameworks

Samia Benmansour; Alexandre Abhervé; Patricia Gómez-Claramunt; Cristina Vallés-García; Carlos J. Gómez-García

We report the synthesis, magnetic properties, electrical conductivity, and delamination into thin nanosheets of two anilato-based Fe(II)/Fe(III) mixed-valence two-dimensional metal-organic frameworks (MOFs). Compounds [(H3O)(H2O)(phenazine)3][FeIIFeIII(C6O4X2)3]·12H2O [X = Cl (1) and Br (2)] present a honeycomb layered structure with an eclipsed packing that generates hexagonal channels containing the water molecules. Both compounds show ferrimagnetic ordering at ca. 2 K coexisting with electrical conductivity (with room temperature conductivities of 0.03 and 0.003 S/cm). Changing the X group from Cl to Br leads to a decrease in the ordering temperature and room temperature conductivity that is correlated with the decrease of the electronegativity of X. Despite the ionic charge of the anilato-based layers, these MOFs can be easily delaminated in thin nanosheets with the thickness of a few monolayers.


New Journal of Chemistry | 2014

Tuning the nuclearity of iron(III) polynuclear clusters by using tetradentate Schiff-base ligands

Alexandre Abhervé; Juan M. Clemente-Juan; Miguel Clemente-León; Eugenio Coronado; Jaursup Boonmak; Sujittra Youngme

Three novel octanuclear, hexanuclear and tetranuclear complexes of high-spin Fe(III) ions were obtained by the reaction of the N,N′-bis-(1R-imidazol-4-ylmethylene)-ethane-1,2-diamine ligand (R = H, CH3) and its derivatives with Fe(ClO4)3·6H2O and KSCN. The tetradentate Schiff-base ligand acts as a bis(bidentate) chelating bridge between two adjacent high-spin Fe(III) centers. The presence of a methyl group in the imidazolyl substituent, the change of counterions or the replacement of imidazole by pyridine has a drastic effect on the nuclearity of the cluster. The magnetic properties of all compounds exhibit antiferromagnetic interactions via μ-oxo or μ-hydroxo pathways in Fe(III) dimers.


Journal of Materials Chemistry C | 2015

Bimetallic MnIII–FeII hybrid complexes formed by a functionalized MnIII Anderson polyoxometalate coordinated to FeII: observation of a field-induced slow relaxation of magnetization in the MnIII centres and a photoinduced spin-crossover in the FeII centres

Alexandre Abhervé; Mario Palacios-Corella; Juan M. Clemente-Juan; Raphael Marx; Petr Neugebauer; Joris van Slageren; Miguel Clemente-León; Eugenio Coronado

The synthesis and crystal structure of an Anderson POM functionalized with two 2,6-di(pyrazol-1-yl)-pyridine (1-bpp) ligands are reported (compound 1). High-frequency electron paramagnetic resonance (HF-EPR) and magnetic measurements show that it presents a significant negative axial zero-field splitting and field-induced slow relaxation of magnetization due to the presence of isolated MnIII anisotropic magnetic ions. Complexation of 1 with FeII gives rise to a 2D cationic network formed by Anderson POMs coordinated to two FeII ions through the two tridentate 1-bpp ligands and to other two FeII ions through two oxo ligands in compound 2, and to an anionic polymeric network formed by Anderson POMs coordinated through the 1-bpp ligands to two FeII, which are coordinated to two 1-bpp ligands from two neighbouring POMs, in compound 3. The crystal structure of 2 has been solved. Magnetic properties show that the FeII atoms of 3 remain in the low-spin state, while those of 2 remain in the high-spin state due to coordination to oxygen atoms from a neighbouring POM and dimethylformamide and water solvent molecules. Irradiation of 3 at 10 K with green light induces a spin-crossover (LIESST effect) with a small but significant photoconversion (∼8%). Finally, AC susceptibility measurements of 2, 3 and (C16H36N)3[MnMo6O18{(OCH2)3CNH2}2] (4) confirm field-induced slow relaxation of magnetization of MnIII Anderson POMs.


Inorganic Chemistry | 2016

Nonanuclear Spin-Crossover Complex Containing Iron(II) and Iron(III) Based on a 2,6-Bis(pyrazol-1-yl)pyridine Ligand Functionalized with a Carboxylate Group

Alexandre Abhervé; María José Recio-Carretero; Maurici López-Jordà; Juan M. Clemente-Juan; Josep Canet-Ferrer; A. Cantarero; Miguel Clemente-León; Eugenio Coronado

The synthesis and magnetostructural characterization of [Fe(III)3(μ3-O)(H2O)3[Fe(II)(bppCOOH)(bppCOO)]6](ClO4)13·(CH3)2CO)6·(solvate) (2) are reported. This compound is obtained as a secondary product during synthesis of the mononuclear complex [Fe(II)(bppCOOH)2](ClO4)2 (1). The single-crystal X-ray diffraction structure of 2 shows that it contains the nonanuclear cluster of the formula [Fe(III)3(μ3-O)(H2O)3[Fe(II)(bppCOOH)(bppCOO)]6](13+), which is formed by a central Fe(III)3O core coordinated to six partially deprotonated [Fe(II)(bppCOOH)(bppCOO)](+) complexes. Raman spectroscopy studies on single crystals of 1 and 2 have been performed to elucidate the spin and oxidation states of iron in 2. These studies and magnetic characterization indicate that most of the iron(II) complexes of 2 remain in the low-spin (LS) state and present a gradual and incomplete spin crossover above 300 K. On the other hand, the Fe(III) trimer shows the expected antiferromagnetic behavior. From the structural point of view, 2 represents the first example in which bppCOO(-) acts as a bridging ligand, thus forming a polynuclear magnetic complex.


Journal of the American Chemical Society | 2018

Conducting Anilate-Based Mixed-Valence Fe(II)Fe(III) Coordination Polymer: Small-Polaron Hopping Model for Oxalate-Type Fe(II)Fe(III) 2D Networks

Suchithra Ashoka Sahadevan; Alexandre Abhervé; Noemi Monni; Cristina Sáenz de Pipaón; José Ramón Galán-Mascarós; J.C. Waerenborgh; Bruno J. C. Vieira; Pascale Auban-Senzier; Sébastien Pillet; El-Eulmi Bendeif; Pere Alemany; Enric Canadell; Maria Laura Mercuri; Narcis Avarvari

The mixed-valence FeIIFeIII 2D coordination polymer formulated as [TAG][FeIIFeIII(ClCNAn)3]·(solvate) 1 (TAG = tris(amino)-guanidinium, ClCNAn2- = chlorocyanoanilate dianionic ligand) crystallized in the polar trigonal space group P3. In the solid-state structure, determined both at 150 and at 10 K, anionic 2D honeycomb layers [FeIIFeIII(ClCNAn)3]- establish in the ab plane, with an intralayer metal-metal distance of 7.860 Å, alternating with cationic layers of TAG. The similar Fe-O distances suggest electron delocalization and an average oxidation state of +2.5 for each Fe center. The cation imposes its C3 symmetry to the structure and engages in intermolecular N-H···Cl hydrogen bonding with the ligand. Magnetic susceptibility characterization indicates magnetic ordering below 4 K and the presence of a hysteresis loop at 2 K with a coercive field of 60 Oe. Mössbauer measurements are in agreement with the existence of Fe(+2.5) ions at RT and statistic charge localization at 10 K. The compound shows semiconducting behavior with the in-plane conductivity of 2 × 10-3 S/cm, 3 orders of magnitude higher than the perpendicular one. A small-polaron hopping model has been applied to a series of oxalate-type FeIIFeIII 2D coordination polymers, providing a clear explanation on the much higher conductivity of the anilate-based systems than the oxalate ones.


CrystEngComm | 2018

Iron(II) and cobalt(II) complexes based on anionic phenanthroline-imidazolate ligands: reversible single-crystal-to-single-crystal transformations

Alexandre Abhervé; Samia Benmansour; Carlos J. Gómez-García; Narcis Avarvari

A series of low-spin FeII and CoII complexes based on phenanthroline-imidazolate (PIMP) ligands are reported. The FeII complex (H9O4)[Fe(PIMP)3]·(C4H10O)2(H2O) (1a) shows reversible crystalline phase transformations to afford two new phases (H9O4)[Fe(PIMP)3]·(H2O) (1b) and (H9O4)[Fe(PIMP)3]·(C8H18O)(C4H10O)(H2O) (1c) by release of diethyl ether and absorption of diethyl/dibutyl ether, respectively. This reversible uptake/release of solvent molecules is a clear example of single-crystal-to-single-crystal transformation involving a discrete metal complex. On the other hand, the corresponding CoII complex (H9O4)[Co(PIMP)3]·(C4H10O)2(H2O)2 (2) does not exhibit similar phase transformations. In the neutral complexes [Fe(H-TfPIMP)(TfPIMP)2]·(EtOH)4(H2O)7 (3) and [Co(H-TfPIMP)(TfPIMP)2]·(EtOH)2(H2O)2 (4), which crystallized in the polar space group Pna21 and in the centrosymmetric space group P21/n, respectively, one of the imidazole ligands was not deprotonated.


Chemical Science | 2015

Graphene related magnetic materials: micromechanical exfoliation of 2D layered magnets based on bimetallic anilate complexes with inserted [FeIII(acac2-trien)]+ and [FeIII(sal2-trien)]+ molecules

Alexandre Abhervé; Miguel Clemente-León; Eugenio Coronado


Dalton Transactions | 2014

A spin-crossover complex based on a 2,6-bis(pyrazol-1-yl)pyridine (1-bpp) ligand functionalized with a carboxylate group

Alexandre Abhervé; Miguel Clemente-León; Eugenio Coronado; Carlos J. Gómez-García; Maurici López-Jordà

Collaboration


Dive into the Alexandre Abhervé's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noemi Monni

University of Cagliari

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cristina Sáenz de Pipaón

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge