Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandre Boissonnas is active.

Publication


Featured researches published by Alexandre Boissonnas.


eLife | 2015

Immune surveillance of the lung by migrating tissue monocytes

Mathieu P. Rodero; Lucie Poupel; Pierre-Louis Loyher; Pauline Hamon; Fabrice Licata; Charlotte Pessel; David A. Hume; Christophe Combadière; Alexandre Boissonnas

Monocytes are phagocytic effector cells in the blood and precursors of resident and inflammatory tissue macrophages. The aim of the current study was to analyse and compare their contribution to innate immune surveillance of the lung in the steady state with macrophage and dendritic cells (DC). ECFP and EGFP transgenic reporters based upon Csf1r and Cx3cr1 distinguish monocytes from resident mononuclear phagocytes. We used these transgenes to study the migratory properties of monocytes and macrophages by functional imaging on explanted lungs. Migratory monocytes were found to be either patrolling within large vessels of the lung or locating at the interface between lung capillaries and alveoli. This spatial organisation gives to monocytes the property to capture fluorescent particles derived from both vascular and airway routes. We conclude that monocytes participate in steady-state surveillance of the lung, in a way that is complementary to resident macrophages and DC, without differentiating into macrophages. DOI: http://dx.doi.org/10.7554/eLife.07847.001


PLOS ONE | 2014

In vivo imaging reveals a pioneer wave of monocyte recruitment into mouse skin wounds

Mathieu P. Rodero; Fabrice Licata; Lucie Poupel; Pauline Hamon; Kiarash Khosrotehrani; Christophe Combadière; Alexandre Boissonnas

The cells of the mononuclear phagocyte system are essential for the correct healing of adult skin wounds, but their specific functions remain ill-defined. The absence of granulation tissue immediately after skin injury makes it challenging to study the role of mononuclear phagocytes at the initiation of this inflammatory stage. To study their recruitment and migratory behavior within the wound bed, we developed a new model for real-time in vivo imaging of the wound, using transgenic mice that express green and cyan fluorescent proteins and specifically target monocytes. Within hours after the scalp injury, monocytes invaded the wound bed. The complete abrogation of this infiltration in monocyte-deficient CCR2−/− mice argues for the involvement of classical monocytes in this process. Monocyte infiltration unexpectedly occurred as early as neutrophil recruitment did and resulted from active release from the bloodstream toward the matrix through microhemorrhages rather than transendothelial migration. Monocytes randomly scouted around the wound bed, progressively slowed down, and stopped. Our approach identified and characterized a rapid and earlier than expected wave of monocyte infiltration and provides a novel framework for investigating the role of these cells during early stages of wound healing.


PLOS ONE | 2017

Differential impact of the dual CCR2/CCR5 inhibitor cenicriviroc on migration of monocyte and lymphocyte subsets in acute liver injury

Tobias Puengel; Oliver Krenkel; Marlene Kohlhepp; Eric Lefebvre; Tom Luedde; Christian Trautwein; Frank Tacke; Alexandre Boissonnas

A hallmark of acute hepatic injury is the recruitment of neutrophils, monocytes and lymphocytes, including natural killer (NK) or T cells, towards areas of inflammation. The recruitment of leukocytes from their reservoirs bone marrow or spleen into the liver is directed by chemokines such as CCL2 (for monocytes) and CCL5 (for lymphocytes). We herein elucidated the impact of chemokine receptor inhibition by the dual CCR2 and CCR5 inhibitor cenicriviroc (CVC) on the composition of myeloid and lymphoid immune cell populations in acute liver injury. CVC treatment effectively inhibited the migration of bone marrow monocytes and splenic lymphocytes (NK, CD4 T-cells) towards CCL2 or CCL5 in vitro. When liver injury was induced by an intraperitoneal injection of carbon tetrachloride (CCl4) in mice, followed by repetitive oral application of CVC, flow cytometric and unbiased t-SNE analysis of intrahepatic leukocytes demonstrated that dual CCR2/CCR5 inhibition in vivo significantly decreased numbers of monocyte derived macrophages in acutely injured livers. CVC also reduced numbers of Kupffer cells (KC) or monocyte derived macrophages with a KC-like phenotype, respectively, after injury. In contrast to the inhibitory effects in vitro, CVC had no impact on the composition of hepatic lymphoid cell populations in vivo. Effective inhibition of monocyte recruitment was associated with reduced inflammatory macrophage markers and moderately ameliorated hepatic necroses at 36h after CCl4. In conclusion, dual CCR2/CCR5 inhibition primarily translates into reduced monocyte recruitment in acute liver injury in vivo, suggesting that this strategy will be effective in reducing inflammatory macrophages in conditions of liver disease.


Cancer Research | 2016

CCR2 Influences T Regulatory Cell Migration to Tumors and Serves as a Biomarker of Cyclophosphamide Sensitivity

Pierre-Louis Loyher; Juliette Rochefort; Camille Baudesson de Chanville; Pauline Hamon; Géraldine Lescaille; Chloé Bertolus; Maude Guillot-Delost; Matthew F. Krummel; François M. Lemoine; Christophe Combadière; Alexandre Boissonnas

The CCL2 chemokine receptor CCR2 drives cancer by mediating the recruitment of monocytes and myeloid-derived suppressor cells to the tumor microenvironment. In this study, we extend the significance of CCR2 in this setting by identifying a new role for it in mediating recruitment of CD4+ T regulatory cells (Treg). Following tumor initiation, an expanded population of CCR2+ Tregs required CCR2 expression to traffic between draining lymph nodes (dLN) and the tumor. This Treg subset was enriched in the fraction of tumor antigen-specific cells in the dLN, where they displayed an activated immunosuppressive phenotype. Notably, in mouse models, low-dose cyclophosphamide treatment preferentially depleted CCR2+ Treg, enhancing priming of tumor-specific CD8+ T cells. In the MMTV-PyMT transgenic mouse model of breast cancer and in oral squamous cell carcinoma patients, tumor development was associated with decreased blood frequency and inversely increased tumor frequency of CCR2+ Tregs. Our results define a novel subset of CCR2+ Treg involved in tumoral immune escape, and they offer evidence that this Treg subset may be preferentially eradicated by low-dose cyclophosphamide treatment. Cancer Res; 76(22); 6483-94. ©2016 AACR.


Journal of Investigative Dermatology | 2017

Critical Role for Skin-Derived Migratory DCs and Langerhans Cells in TFH and GC Responses after Intradermal Immunization

Clément Levin; Olivia Bonduelle; Charles Nuttens; Charlotte Primard; Bernard Verrier; Alexandre Boissonnas; Béhazine Combadière

Intradermal delivery of antigen represents a potent route of immunization that involves multiple blood- and skin-derived dendritic cell subpopulations endowed with specialized functions and dynamics in their ability to prime naïve CD4+ T cells in the draining lymph nodes. However, their individual contributions to the generation of CD4+ T follicular helper (TFH) cells and germinal centers (GCs) remain to be understood. We found that intradermal immunization of mice with a particle-based vaccine induced robust TFH and germinal center B-cell responses in skin draining lymph nodes, which were completely abrogated when skin cell emigration was prevented. However, in this later condition, both lymph node-resident and blood-derived inflammatory cells access the antigen in the draining lymph nodes but are not able to induce TFH cell differentiation. Rather, only skin-derived dendritic cells up-regulated key genes related to TFH cell development in the draining lymph nodes. Depletion of Langerhans cells partially abrogated TFH and germinal center B-cell responses. Thus, after intradermal immunization, only skin-derived migratory dendritic cells, including Langerhans cells, permit the generation of TFH cells and germinal centers. Identifying the relative contributions of tissue and lymphoid organ dendritic cell subsets in generating humoral immune responses is of great importance for the development of tailored vaccines.


PLOS ONE | 2017

The MHC class II antigen presentation pathway in human monocytes differs by subset and is regulated by cytokines

Justin Lee; Hanson Tam; Lital N. Adler; Alexandra Ilstad-Minnihan; Claudia Macaubas; Elizabeth D. Mellins; Alexandre Boissonnas

Monocytes play a critical role in the innate and adaptive immune systems, performing phagocytosis, presenting antigen, and producing cytokines. They are a heterogeneous population that has been divided in humans into classical, intermediate, and non-classical subsets, but the roles of these subsets are incompletely understood. In this study, we investigated the expression patterns of MHC class II (MHCII) and associated molecules and find that the intermediate monocytes express the highest levels of the MHC molecules, HLA-DR (tested in n = 30 samples), HLA-DP (n = 30), and HLA-DQ (n = 10). HLA-DM (n = 30), which catalyzes the peptide exchange on the MHC molecules, is also expressed at the highest levels in intermediate monocytes. To measure HLA-DM function, we measured levels of MHCII-bound CLIP (class II invariant chain peptide, n = 23), which is exchanged for other peptides by HLA-DM. We calculated CLIP:MHCII ratios to normalize CLIP levels to MHCII levels, and found that intermediate monocytes have the lowest CLIP:MHCII ratio. We isolated the different monocyte subsets (in a total of 7 samples) and analyzed their responses to selected cytokines as model of monocyte activation: two M1-polarizing cytokines (IFNγ, GM-CSF), an M2-polarizing cytokine (IL-4) and IL-10. Classical monocytes exhibit the largest increases in class II pathway expression in response to stimulatory cytokines (IFNγ, GM-CSF, IL-4). All three subsets decrease HLA-DR levels after IL-10 exposure. Our findings argue that intermediate monocytes are the most efficient constitutive antigen presenting subset, that classical monocytes are recruited into an antigen presentation role during inflammatory responses and that IL-10 negatively regulates this function across all subsets.


Scientific Reports | 2017

Unveiling Cerebral Leishmaniasis: parasites and brain inflammation in Leishmania donovani infected mice

Guilherme D. Melo; Sophie Goyard; Laurence Fiette; Alexandre Boissonnas; Christophe Combadière; Gisele Fabrino Machado; Paola Minoprio; Thierry Lang

Visceral leishmaniasis (VL) is a systemic disease with multifaceted clinical manifestations, including neurological signs, however, the involvement of the nervous system during VL is underestimated. Accordingly, we investigated both brain infection and inflammation in a mouse model of VL. Using bioluminescent Leishmania donovani and real-time 2D-3D imaging tools, we strikingly detected live parasites in the brain, where we observed a compartmentalized dual-phased inflammation pattern: an early phase during the first two weeks post-infection, with the prompt arrival of neutrophils and Ly6Chigh macrophages in an environment presenting a variety of pro-inflammatory mediators (IFN-γ, IL-1β, CXCL-10/CXCR-3, CCL-7/CCR-2), but with an intense anti-inflammatory response, led by IL-10; and a re-inflammation phase three months later, extremely pro-inflammatory, with novel upregulation of mediators, including IL-1β, TNF-α and MMP-9. These new data give support and corroborate previous studies connecting human and canine VL with neuroinflammation and blood-brain barrier disruption, and conclusively place the brain among the organs affected by this parasite. Altogether, our results provide convincing evidences that Leishmania donovani indeed infects and inflames the brain.


Nature Communications | 2018

Profiling the lymphoid-resident T cell pool reveals modulation by age and microbiota

Aurélie Durand; Alexandra Audemard-Verger; Vincent Guichard; Raphaël Mattiuz; Arnaud Delpoux; Pauline Hamon; Nelly Bonilla; Matthieu Rivière; Jérôme Delon; Bruno Martin; Cédric Auffray; Alexandre Boissonnas; Bruno Lucas

Despite being implicated in non-lymphoid tissues, non-recirculating T cells may also exist in secondary lymphoid organs (SLO). However, a detailed characterization of this lymphoid-resident T cell pool has not yet been done. Here we show that a substantial proportion of CD4 regulatory (Treg) and memory (Tmem) cells establish long-term residence in the SLOs of specific pathogen-free mice. Of these SLOs, only T cell residence within Peyer’s patches is affected by microbiota. Resident CD4 Treg and CD4 Tmem cells from lymph nodes and non-lymphoid tissues share many phenotypic and functional characteristics. The percentage of resident T cells in SLOs increases considerably with age, with S1PR1 downregulation possibly contributing to this altered homeostasis. Our results thus show that T cell residence is not only a hallmark of non-lymphoid tissues, but can be extended to secondary lymphoid organs.Non-circulating, tissue-resident T cells have been reported for non-lymphoid organs, but their characterization and regulation in secondary lymphoid organs (SLO) are still lacking. Here the authors show that age and microbiota both exert SLO-specific effects for the various tissue-resident T cell subsets.


PLOS ONE | 2017

Modulation of functional characteristics of resident and thioglycollate-elicited peritoneal murine macrophages by a recombinant banana lectin

Emilija Marinkovic; Radmila Djokic; Ivana Lukic; Ana Filipovic; Aleksandra Inic-Kanada; Dejana Kosanovic; Marija Gavrovic-Jankulovic; Marijana Stojanovic; Alexandre Boissonnas

We demonstrated that a recombinant banana lectin (rBanLec), which structural characteristics and physiological impacts highly resemble those reported for its natural counterparts, binds murine peritoneal macrophages and specifically modulates their functional characteristics. By using rBanLec in concentrations ranging from 1 μg to 10 μg to stimulate resident (RMs) and thioglycollate-elicited (TGMs) peritoneal macrophages from BALB/c and C57BL/6 mice, we have shown that effects of rBanLec stimulation depend on its concentration but also on the functional status of macrophages and their genetic background. rBanLec, in a positive dose-dependent manner, promotes the proliferation of TGMs from both BALB/c and C57BL/6 mice, while its mitogenic influence on RMs is significantly lower (BALB/c mice) or not detectable (C57BL/6 mice). In all peritoneal macrophages, irrespective of their type and genetic background, rBanLec, in a positive dose dependent manner, enhances the secretion of IL-10. rBanLec stimulation of RMs from both BALB/c and C57BL/6 resulted in a positive dose-dependent promotion of proinflammatory phenotype (enhancement of NO production and IL-12 and TNFα secretion, reduction of arginase activity). Positive dose-dependent skewing toward proinflammatory phenotype was also observed in TGMs from C57BL/6 mice. However, the enhancement of rBanLec stimulation promotes skewing of TGMs from BALB/c mice towards anti-inflammatory profile (reduction of NO production and IL-12 secretion, enhancement of arginase activity and TGFβ and IL-4 secretion). Moreover, we established that rBanLec binds oligosaccharide structures of TLR2 and CD14 and that blocking of signaling via these receptors significantly impairs the production of TNFα and NO in BALB/c macrophages. Since the outcome of rBanLec stimulation depends on rBanLec concentration as well as on the functional characteristics of its target cells and their genetic background, further studies are needed to investigate its effects under physiological and specific pathological conditions.


PLOS ONE | 2017

Chemokine binding protein 'M3' limits atherosclerosis in apolipoprotein E-/- mice

Dhanya Ravindran; Anisyah Ridiandries; Laura Z. Vanags; Rodney Henriquez; Siân P. Cartland; Joanne T. M. Tan; Christina A. Bursill; Alexandre Boissonnas

Chemokines are important in macrophage recruitment and the progression of atherosclerosis. The ‘M3’ chemokine binding protein inactivates key chemokines involved in atherosclerosis (e.g. CCL2, CCL5 and CX3CL1). We aimed to determine the effect of M3 on plaque development and composition. In vitro chemotaxis studies confirmed that M3 protein inhibited the activity of chemokines CCL2, CCL5 and CX3CL1 as primary human monocyte migration as well as CCR2-, CCR5- and CX3CR1-directed migration was attenuated by M3. In vivo, adenoviruses encoding M3 (AdM3) or green fluorescence protein (AdGFP; control) were infused systemically into apolipoprotein (apo)-E-/- mice. Two models of atherosclerosis development were used in which the rate of plaque progression was varied by diet including: (1) a ‘rapid promotion’ model (6-week high-fat-fed) and (2) a ‘slow progression’ model (12-week chow-fed). Plasma chemokine activity was suppressed in AdM3-infused mice as indicated by significantly less monocyte migration towards AdM3 mouse plasma ex vivo (29.56%, p = 0.014). In the ‘slow progression’ model AdM3 mice had reduced lesion area (45.3%, p = 0.035) and increased aortic smooth muscle cell α-actin expression (60.3%, p = 0.014). The reduction in lesion size could not be explained by changes in circulating inflammatory monocytes as they were higher in the AdM3 group. In the ‘rapid promotion’ model AdM3 mice had no changes in plaque size but reduced plaque macrophage content (46.8%, p = 0.006) and suppressed lipid deposition in thoracic aortas (66.9%, p<0.05). There was also a reduction in phosphorylated p65, the active subunit of NF-κb, in the aortas of AdM3 mice (37.3%, p<0.0001). M3 inhibited liver CCL2 concentrations in both models with no change in CCL5 or systemic chemokine levels. These findings show M3 causes varying effects on atherosclerosis progression and plaque composition depending on the rate of lesion progression. Overall, our studies support a promising role for chemokine inhibition with M3 for the treatment of atherosclerosis.

Collaboration


Dive into the Alexandre Boissonnas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge