Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandre Bouron is active.

Publication


Featured researches published by Alexandre Bouron.


Progress in Neurobiology | 2001

Modulation of spontaneous quantal release of neurotransmitters in the hippocampus.

Alexandre Bouron

Presynaptic action potentials trigger the exocytosis of neurotransmitters. However, even in the absence of depolarisation-dependent Ca2+ entry nearby release sites, spontaneous vesicular release still occurs. Even though this happens at low rate, such spontaneous release may play a trophic role in maintaining the shape of dendritic structures. Like evoked responses, action potential-independent release is subject to modulation. This review describes some of the regulatory factors that rapidly and presynaptically regulate the ongoing Ca2+-independent release of neurotransmitters in the hippocampus. For instance, the electrical activity of the nerve ending, neurotransmitters, hypertonic solutions, neurotoxins, polycations, neurotrophic factors, immunoglobulins, cyclothiazide and psychotropic drugs can all modify the rate of spontaneous release. This can be achieved through various mechanisms that can be Ca2+-dependent or Ca2+-independent, protein kinase-dependent or independent. Since action potential-independent release contributes to the maintenance of dendritic structures, neuromodulators are likely to influence the density and/or length of dendritic spines, which in turn may modulate information processing in the central nervous system (CNS).


The Journal of Neuroscience | 2007

IQGAP1 regulates adult neural progenitors in vivo and vascular endothelial growth factor-triggered neural progenitor migration in vitro.

Laurent Balenci; Yasmina Saoudi; Didier Grunwald; Jean Christophe Deloulme; Alexandre Bouron; Andre Bernards; Jacques Baudier

In the germinative zone of the adult rodent brain, neural progenitors migrate into niches delimited by astrocyte processes and differentiate into neuronal precursors. In the present study, we report a modulating role for the scaffolding protein IQGAP1 in neural progenitor migration. We have identified IQGAP1 as a new marker of amplifying neural progenitor and neuronal precursor cells of the subventricular zone (SVZ) and the rostral migratory stream (RMS) in the adult mouse brain. To determine functions for IQGAP1 in neural progenitors, we compared the properties of neural progenitor cells from wild-type and Iqgap1-null mutant mice in vivo and in vitro. The in vivo studies reveal a delay in the transition of de novo neural progenitors into neuronal precursor cells in Iqgap1-null mice. In vitro, we demonstrated that IQGAP1 acts as a downstream effector in the vascular endothelial growth factor (VEGF)-dependent migratory response of neural progenitors that also impacts on their neuronal differentiation. The Rho-family GTPases cdc42/Rac1 and Lis1 are major partners of IQGAP1 in this migratory process. Finally, astrocytes of the neurogenic SVZ and RMS are shown to express VEGF. We propose that VEGF synthesized by astrocytes could be involved in the guidance of neural progenitors to neurogenic niches and that IQGAP1 is an effector of the VEGF-dependent migratory signal.


Journal of Neurochemistry | 2010

The TRPC6 channel activator hyperforin induces the release of zinc and calcium from mitochondria

Peng Tu; Julien Gibon; Alexandre Bouron

J. Neurochem. (2010) 112, 204–213.


The International Journal of Neuropsychopharmacology | 2013

The antidepressant hyperforin increases the phosphorylation of CREB and the expression of TrkB in a tissue-specific manner.

Julien Gibon; Jean-Christophe Deloulme; Tiphaine Chevallier; E. Ladevèze; Djoher Nora Abrous; Alexandre Bouron

Hyperforin is one of the main bioactive compounds that underlie the antidepressant actions of the medicinal plant Hypericum perforatum (St. Johns wort). However, the effects of a chronic hyperforin treatment on brain cells remains to be fully addressed. The following study was undertaken to further advance our understanding of the biological effects of this plant extract on neurons. Special attention was given to its impact on the brain-derived neurotrophic factor (BDNF) receptor TrkB and on adult hippocampal neurogenesis since they appear central to the mechanisms of action of antidepressants. The consequences of a chronic hyperforin treatment were investigated on cortical neurons in culture and on the brain of adult mice treated for 4 wk with a daily injection (i.p.) of hyperforin (4 mg/kg). Its effects on the expression of the cyclic adenosine monophosphate response element-binding protein (CREB), phospho-CREB (p-CREB), TrkB and phospho-TrkB (p-TrkB) were analysed by Western blot experiments and its impact on adult hippocampal neurogenesis was also investigated. Hyperforin stimulated the expression of TRPC6 channels and TrkB via SKF-96365-sensitive channels controlling a downstream signalling cascade involving Ca(2+), protein kinase A, CREB and p-CREB. In vivo, hyperforin augmented the expression of TrkB in the cortex but not in the hippocampus where hippocampal neurogenesis remained unchanged. In conclusion, this plant extract acts on the cortical BDNF/TrkB pathway leaving adult hippocampal neurogenesis unaffected. This study provides new insights on the neuronal responses controlled by hyperforin. We propose that the cortex is an important brain structure targeted by hyperforin.


Journal of Neurochemistry | 2009

Diacylglycerol analogues activate second messenger‐operated calcium channels exhibiting TRPC‐like properties in cortical neurons

Peng Tu; Christiane Kunert-Keil; Silke Lucke; Heinrich Brinkmeier; Alexandre Bouron

The lipid diacylglycerol (DAG) analogue 1‐oleoyl‐2‐acetyl‐sn‐glycerol (OAG) was used to verify the existence of DAG‐sensitive channels in cortical neurons dissociated from E13 mouse embryos. Calcium imaging experiments showed that OAG increased the cytosolic concentration of Ca2+ ([Ca2+]i) in nearly 35% of the KCl‐responsive cells. These Ca2+ responses disappeared in a Ca2+‐free medium supplemented with EGTA. Mn2+ quench experiments showed that OAG activated Ca2+‐conducting channels that were also permeant to Ba2+. The OAG‐induced Ca2+ responses were unaffected by nifedipine or omega‐conotoxin GVIA (Sigma‐Aldrich, Saint‐Quentin Fallavier, France) but blocked by 1‐[β‐(3‐(4‐Methoxyphenyl)propoxy)‐4‐methoxyphenethyl]‐1H‐imidazole hydrochloride (SKF)‐96365 and Gd3+. Replacing Na+ ions with N‐methyl‐d‐glucamine diminished the amplitude of the OAG‐induced Ca2+ responses showing that the Ca2+ entry was mediated via Na+‐dependent and Na+‐independent mechanisms. Experiments carried out with the fluorescent Na+ indicator CoroNa Green showed that OAG elevated [Na+]i. Like OAG, the DAG lipase inhibitor RHC80267 increased [Ca2+]i but not the protein kinase C activator phorbol 12‐myristate 13‐acetate. Moreover, the OAG‐induced Ca2+ responses were not regulated by protein kinase C activation or inhibition but they were augmented by flufenamic acid which increases currents through C‐type transient receptor potential protein family (TRPC) 6 channels. In addition, application of hyperforin, a specific activator of TRPC6 channels, elevated [Ca2+]i. Whole‐cell patch‐clamp recordings showed that hyperforin activated non‐selective cation channels. They were blocked by SKF‐96365 but potentiated by flufenamic acid. Altogether, our data show the presence of hyperforin‐ and OAG‐sensitive Ca2+‐permeable channels displaying TRPC6‐like properties. This is the first report revealing the existence of second messenger‐operated channels in cortical neurons.


Pflügers Archiv: European Journal of Physiology | 2015

Permeation, regulation and control of expression of TRP channels by trace metal ions

Alexandre Bouron; Kirill Kiselyov; Johannes Oberwinkler

Transient receptor potential (TRP) channels form a diverse family of cation channels comprising 28 members in mammals. Although some TRP proteins can only be found on intracellular membranes, most of the TRP protein isoforms reach the plasma membrane where they form ion channels and control a wide number of biological processes. There, their involvement in the transport of cations such as calcium and sodium has been well documented. However, a growing number of studies have started to expand our understanding of these proteins by showing that they also transport other biologically relevant metal ions like zinc, magnesium, manganese and cobalt. In addition to this newly recognized property, the activity and expression of TRP channels can be regulated by metal ions like magnesium, gadolinium, lanthanum or cisplatin. The aim of this review is to highlight the complex relationship between metal ions and TRP channels.


Biochimica et Biophysica Acta | 2011

The over-expression of TRPC6 channels in HEK-293 cells favours the intracellular accumulation of zinc

Julien Gibon; Peng Tu; Sylvain Bohic; Pierre Richaud; Josiane Arnaud; Michael X. Zhu; Guylain Boulay; Alexandre Bouron

TRPC6 are plasma membrane cation channels. By means of live-cell imaging and spectroscopic methods, we found that HEK cells expressing TRPC6 channels (HEK-TRPC6) are enriched in zinc and sulphur and have a reduced copper content when compared to HEK cells and HEK cells expressing TRPC3 channels (HEK-TRPC3). Hence, HEK-TRPC6 cells have larger pools of mobilizable Zn2+ and are more sensitive to an oxidative stress. Synchrotron X-ray fluorescence experiments showed a higher zinc content in the nuclear region indicating that the intracellular distribution of this metal was influenced by the over-expression of TRPC6 channels. Their properties were investigated with the diacylglycerol analogue SAG and the plant extract hyperforin. Electrophysiological recordings and imaging experiments with the fluorescent Zn2+ probe FluoZin-3 demonstrated that TRPC6 channels form Zn2+-conducting channels. In cortical neurons, hyperforin-sensitive channels co-exist with voltage-gated channels, AMPA and NMDA receptors, which are known to transport Zn2+. The ability of these channels to regulate the size of the mobilizable pools of Zn2+ was compared. The data collected indicate that the entry of Zn2+ through TRPC6 channels can up-regulate the size of the DTDP-sensitive pool of Zn2+. By showing that TRPC6 channels constitute a Zn2+ entry pathway, our study suggests that they could play a role in zinc homeostasis.


Histochemistry and Cell Biology | 2009

Heterogeneous distribution of TRPC proteins in the embryonic cortex

Sylvie Boisseau; Christiane Kunert-Keil; Silke Lucke; Alexandre Bouron

The present study was initiated to gain some information about the tissue distribution of transient receptor potential proteins of C-type (TRPC), a family of voltage-independent cation channels, at the beginning of neurogenesis in the telencephalon of embryonic mice. The mRNAs of all known TRPCs (TRPC1–TRPC7) could be found in the cortex at E13. TRPC1, TRPC3 and TRPC5 were the main isoforms, whereas the mRNAs for TRPC2, TRPC4, TRPC6 and TRPC7 were less abundant. The distribution throughout the cortical wall of TRPC1, TRPC3 and TRPC6 was studied by means of immuno-histochemistry. The data collected pointed to a heterogeneous expression of the channels. Three groups were identified. The first one comprises TRPC1, specifically found in the preplate but only in some post-mitotic neurons. It was mainly observed in a subset of cells distinct from the Cajal-Retzius cells. The second group is composed of TRPC3. It was found in non-neuronal cells and also in dividing (5-bromo-2′-deoxyuridine-positive) cells, indicating that TRPC3 is present in precursor cells. The third group contains TRPC6 detected in neuronal and in dividing non-neuronal cells. Double immunostaining experiments showed that TRPC3-positive cells also express TRPC6. Collectively, this report highlights a specific TRPC expression pattern in the immature cortical wall.


Pflügers Archiv: European Journal of Physiology | 2014

Contribution of calcium-conducting channels to the transport of zinc ions.

Alexandre Bouron; Johannes Oberwinkler

Zinc (Zn) is a vital nutrient participating in a myriad of biological processes. The mechanisms controlling its transport through the plasma membrane are far from being completely understood. Two families of eukaryotic zinc transporters are known to date: the Zip (SLC39) and ZnT (SLC30) proteins. In addition, some types of plasmalemmal calcium (Ca)-conducting channels are implied in the cellular uptake of zinc. These ion channels are currently described as systems dedicated to the transport of Ca (and, to some extent, sodium (Na) ions). However, a growing body of evidence supports the view that some of them can also function as pathways for Zn transport. For instance, voltage-gated Ca channels and some types of glutamate-gated receptors have long been known to allow the entry of Zn. More recently, members of the TRP superfamily, another type of Ca-conducting channels, have been shown to permit the uptake of Zn into eukaryotic cells. The aim of this review article is to present the current knowledge supporting the notion that Ca-conducting channels take part in the plasmalemmal transport of Zn.


Neuropharmacology | 2009

The anti-inflammatory agent flufenamic acid depresses store-operated channels by altering mitochondrial calcium homeostasis

Peng Tu; Gérard Brandolin; Alexandre Bouron

Fenamates like flufenamic acid (FFA) are anti-inflammatory drugs known to alter ion fluxes through the plasma membrane. They are for instance potent blockers of cation and anion channels, and FFA is now commonly used to block currents through TRP channels and receptor-operated channels. However, FFA exerts complex and multifaceted actions on ion transport systems and, in most instances, a molecular understanding of these FFA-dependent modulations is lacking. In addition, FFA is also to known to perturb the homeostasis of Ca2+. In the present report, we investigated whether the FFA-induced alterations of the Ca2+ homeostasis could play a role in the FFA-dependent modulation of transmembrane ion fluxes. Experiments performed with the Ca2+ indicator Fluo-4 on cultured cortical neurons and HEK-293 cells showed that FFA increased the cytosolic concentration of Ca2+ even in cells kept in a Ca2+-free medium or when the endoplasmic reticulum was depleted with thapsigargin. The FFA-dependent Ca2+ responses were, however, strongly reduced by bongkrekic acid, a specific ligand of the mitochondrial ADP/ATP carrier which, in addition, inhibits the permeability transition pore. Like FCCP, FFA released Ca2+ from isolated brain mitochondria and indirectly modulates store-operated Ca2+ channels. We suggest that some of the effects of FFA on plasma membrane ion channels could be explained, at least partially, by its ability to modulate the mitochondrial Ca2+ homeostasis.

Collaboration


Dive into the Alexandre Bouron's collaboration.

Top Co-Authors

Avatar

Julien Gibon

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Peng Tu

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Sylvain Chauvet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Pierre Richaud

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Sylvain Bohic

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar

Estelle Rousselet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Louis Jarvis

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Mireille Chevallet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Guy Raymond

University of Poitiers

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge