Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandre Dalet is active.

Publication


Featured researches published by Alexandre Dalet.


Science | 2006

An antigen produced by splicing of noncontiguous peptides in the reverse order

Edus H. Warren; Nathalie Vigneron; Marc A. Gavin; Pierre Coulie; Vincent Stroobant; Alexandre Dalet; Scott S. Tykodi; Suzanne M. Xuereb; Jeffrey K. Mito; Stanley R. Riddell; Benoît Van den Eynde

CD8-positive T lymphocytes recognize peptides that are usually derived from the degradation of cellular proteins and are presented by class I molecules of the major histocompatibility complex. Here we describe a human minor histocompatibility antigen created by a polymorphism in the SP110 nuclear phosphoprotein gene. The antigenic peptide comprises two noncontiguous SP110 peptide segments spliced together in reverse order to that in which they occur in the predicted SP110 protein. The antigenic peptide could be produced in vitro by incubation of precursor peptides with highly purified 20S proteasomes. Cutting and splicing probably occur within the proteasome by transpeptidation.


The EMBO Journal | 2013

Mapping the crossroads of immune activation and cellular stress response pathways

Nuno Cláudio; Alexandre Dalet; Evelina Gatti; Philippe Pierre

The innate immune cell network detects specific microbes and damages to cell integrity in order to coordinate and polarize the immune response against invading pathogens. In recent years, a cross‐talk between microbial‐sensing pathways and endoplasmic reticulum (ER) homeostasis has been discovered and have attracted the attention of many researchers from the inflammation field. Abnormal accumulation of proteins in the ER can be seen as a sign of cellular malfunction and triggers a collection of conserved emergency rescue pathways. These signalling cascades, which increase ER homeostasis and favour cell survival, are collectively known as the unfolded protein response (UPR). The induction or activation by microbial stimuli of several molecules linked to the ER stress response pathway have led to the conclusion that microbe sensing by immunocytes is generally associated with an UPR, which serves as a signal amplification cascade favouring inflammatory cytokines production. Induction of the UPR alone was shown to promote inflammation in different cellular and pathological models. Here we discuss how the innate immune and ER‐signalling pathways intersect. Moreover, we propose that the induction of UPR‐related molecules by microbial products does not necessarily reflect ER stress, but instead is an integral part of a specific transcription programme controlled by innate immunity receptors.


PLOS Pathogens | 2012

Induction of GADD34 Is Necessary for dsRNA-Dependent Interferon-β Production and Participates in the Control of Chikungunya Virus Infection

Giovanna Clavarino; Nuno Cláudio; Thérèse Couderc; Alexandre Dalet; Delphine Judith; Voahirana Camosseto; Enrico K. Schmidt; Till Wenger; Marc Lecuit; Evelina Gatti; Philippe Pierre

Nucleic acid sensing by cells is a key feature of antiviral responses, which generally result in type-I Interferon production and tissue protection. However, detection of double-stranded RNAs in virus-infected cells promotes two concomitant and apparently conflicting events. The dsRNA-dependent protein kinase (PKR) phosphorylates translation initiation factor 2-alpha (eIF2α) and inhibits protein synthesis, whereas cytosolic DExD/H box RNA helicases induce expression of type I-IFN and other cytokines. We demonstrate that the phosphatase-1 cofactor, growth arrest and DNA damage-inducible protein 34 (GADD34/Ppp1r15a), an important component of the unfolded protein response (UPR), is absolutely required for type I-IFN and IL-6 production by mouse embryonic fibroblasts (MEFs) in response to dsRNA. GADD34 expression in MEFs is dependent on PKR activation, linking cytosolic microbial sensing with the ATF4 branch of the UPR. The importance of this link for anti-viral immunity is underlined by the extreme susceptibility of GADD34-deficient fibroblasts and neonate mice to Chikungunya virus infection.


Proceedings of the National Academy of Sciences of the United States of America | 2011

An antigenic peptide produced by reverse splicing and double asparagine deamidation

Alexandre Dalet; Paul F. Robbins; Vincent Stroobant; Nathalie Vigneron; Yong F. Li; Mona El-Gamil; Ken-ichi Hanada; James Chih-Hsin Yang; Steven A. Rosenberg; Benoît Van den Eynde

A variety of unconventional translational and posttranslational mechanisms contribute to the production of antigenic peptides, thereby increasing the diversity of the peptide repertoire presented by MHC class I molecules. Here, we describe a class I-restricted peptide that combines several posttranslational modifications. It is derived from tyrosinase and recognized by tumor-infiltrating lymphocytes isolated from a melanoma patient. This unusual antigenic peptide is made of two noncontiguous tyrosinase fragments that are spliced together in the reverse order. In addition, it contains two aspartate residues that replace the asparagines encoded in the tyrosinase sequence. We confirmed that this peptide is naturally presented at the surface of melanoma cells, and we showed that its processing sequentially requires translation of tyrosinase into the endoplasmic reticulum and its retrotranslocation into the cytosol, where deglycosylation of the two asparagines by peptide-N-glycanase turns them into aspartates by deamidation. This process is followed by cleavage and splicing of the appropriate fragments by the standard proteasome and additional transport of the resulting peptide into the endoplasmic reticulum through the transporter associated with antigen processing (TAP).


Journal of Immunology | 2010

Splicing of Distant Peptide Fragments Occurs in the Proteasome by Transpeptidation and Produces the Spliced Antigenic Peptide Derived from Fibroblast Growth Factor-5

Alexandre Dalet; Nathalie Vigneron; Vincent Stroobant; Ken-ichi Hanada; Benoît Van den Eynde

Peptide splicing is a newly described mode of production of antigenic peptides presented by MHC class I molecules, whereby two noncontiguous fragments of the parental protein are joined together after excision of the intervening segment. Three spliced peptides have been described. In two cases, splicing involved the excision of a short intervening segment of 4 or 6 aa and was shown to occur in the proteasome by transpeptidation resulting from the nucleophilic attack of an acyl-enzyme intermediate by the N terminus of the other peptide fragment. For the third peptide, which is derived from fibroblast growth factor-5 (FGF-5), the splicing mechanism remains unknown. In this case, the intervening segment is 40 aa long. This much greater length made the transpeptidation model more difficult to envision. Therefore, we evaluated the role of the proteasome in the splicing of this peptide. We observed that the spliced FGF-5 peptide was produced in vitro after incubation of proteasomes with a 49-aa-long precursor peptide. We evaluated the catalytic mechanism by incubating proteasomes with various precursor peptides. The results confirmed the transpeptidation model of splicing. By transfecting a series of mutant FGF-5 constructs, we observed that reducing the length of the intervening segment increased the production of the spliced peptide, as predicted by the transpeptidation model. Finally, we observed that trans-splicing (i.e., splicing of fragments from two distinct proteins) can occur in the cell, but with a much lower efficacy than splicing of fragments from the same protein.


Journal of Immunology | 2012

Analysis of the Processing of Seven Human Tumor Antigens by Intermediate Proteasomes

Benoît Guillaume; Vincent Stroobant; Marie-Pierre Bousquet-Dubouch; Didier Colau; Jacques Chapiro; Nicolas Parmentier; Alexandre Dalet; Benoît Van den Eynde

We recently described two proteasome subtypes that are intermediate between the standard proteasome and the immunoproteasome. They contain only one (β5i) or two (β1i and β5i) of the three inducible catalytic subunits of the immunoproteasome. They are present in tumor cells and abundant in normal human tissues. We described two tumor antigenic peptides that are uniquely produced by these intermediate proteasomes. In this work, we studied the production by intermediate proteasomes of tumor antigenic peptides known to be produced exclusively by the immunoproteasome (MAGE-A3114–122, MAGE-C242–50, MAGE-C2336–344) or the standard proteasome (Melan-A26–35, tyrosinase369–377, gp100209–217). We observed that intermediate proteasomes efficiently produced the former peptides, but not the latter. Two peptides from the first group were equally produced by both intermediate proteasomes, whereas MAGE-C2336–344 was only produced by intermediate proteasome β1i-β5i. Those results explain the recognition of tumor cells devoid of immunoproteasome by CTL recognizing peptides not produced by the standard proteasome. We also describe a third antigenic peptide that is produced exclusively by an intermediate proteasome: peptide MAGE-C2191–200 is produced only by intermediate proteasome β1i-β5i. Analyzing in vitro digests, we observed that the lack of production by a given proteasome usually results from destruction of the antigenic peptide by internal cleavage. Interestingly, we observed that the immunoproteasome and the intermediate proteasomes fail to cleave between hydrophobic residues, despite a higher chymotrypsin-like activity measured on fluorogenic substrates. Altogether, our results indicate that the repertoire of peptides produced by intermediate proteasomes largely matches the repertoire produced by the immunoproteasome, but also contains additional peptides.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Protein phosphatase 1 subunit Ppp1r15a/GADD34 regulates cytokine production in polyinosinic:polycytidylic acid-stimulated dendritic cells

Giovanna Clavarino; Nuno Cláudio; Alexandre Dalet; Seigo Terawaki; Thérèse Couderc; Lionel Chasson; Maurizio Ceppi; Enrico K. Schmidt; Till Wenger; Marc Lecuit; Evelina Gatti; Philippe Pierre

In response to inflammatory stimulation, dendritic cells (DCs) have a remarkable pattern of differentiation that exhibits specific mechanisms to control the immune response. Here we show that in response to polyriboinosinic:polyribocytidylic acid (pI:C), DCs mount a specific integrated stress response during which the transcription factor ATF4 and the growth arrest and DNA damage-inducible protein 34 (GADD34/Ppp1r15a), a phosphatase 1 (PP1) cofactor, are expressed. In agreement with increased GADD34 levels, an extensive dephosphorylation of the translation initiation factor eIF2α was observed during DC activation. Unexpectedly, although DCs display an unusual resistance to protein synthesis inhibition induced in response to cytosolic dsRNA, GADD34 expression did not have a major impact on protein synthesis. GADD34, however, was shown to be required for normal cytokine production both in vitro and in vivo. These observations have important implications in linking further pathogen detection with the integrated stress response pathways.


European Journal of Immunology | 2011

Differences in the production of spliced antigenic peptides by the standard proteasome and the immunoproteasome

Alexandre Dalet; Vincent Stroobant; Nathalie Vigneron; Benoît Van den Eynde

Peptide splicing allows the production of antigenic peptides composed of two fragments initially non‐contiguous in the parental protein. The proposed mechanism of splicing is a transpeptidation occurring within the proteasome. Three spliced peptides, derived from FGF‐5, melanoma protein gp100 and nuclear protein SP110, have been described. Here, we compared the production of these spliced peptides by the standard proteasome and the immunoproteasome. Differential isotope labelling was used to quantify (by mass spectrometry) the fragments contained in digests obtained with precursor peptides and purified proteasomes. The results show that both the standard and the immunoproteasomes can produce spliced peptides although they differ in their efficiency of production of each peptide. The FGF‐5 and gp100 peptides are more efficiently produced by the standard proteasome, whereas the SP110 peptide is more efficiently produced by the immunoproteasome. This seems to result from differences in the production of the two splicing partners, which depends on a balance between cleavages liberating or destroying those fragments. By showing that splicing depends on the efficiency of production of the splicing partners, these results also support the transpeptidation model of peptide splicing. Furthermore, given the presence of immunoproteasomes in dendritic cells and cells exposed to IFN‐γ, the findings may be relevant for vaccine design.


FEBS Letters | 2015

Integration of PKR-dependent translation inhibition with innate immunity is required for a coordinated anti-viral response

Alexandre Dalet; Evelina Gatti; Philippe Pierre

Viral triggering of the innate immune response in infected cells aims at delaying viral replication and prevents tissue spreading. Viral replication is delayed by host protein synthesis inhibition and infected cell apoptosis on one hand, while infection spreading is controlled by the synthesis of specific proteins like type‐I interferons (IFNs) and pro‐inflammatory cytokines on the other hand. How do these two apparent conflicting responses cooperate within the same infected cells to mount effective defenses against pathogens? What are the molecules or the complexes resolving this contradiction over time? Some recent studies reveal unanticipated connections between innate immunity and stress pathways, giving important clues on how the cellular responses are orchestrated to limit infection efficiently.


The EMBO Journal | 2017

Protein synthesis inhibition and GADD34 control IFN‐β heterogeneous expression in response to dsRNA

Alexandre Dalet; Rafael J. Argüello; Alexis Combes; Lionel Spinelli; Sébastien Jaeger; Mathieu Fallet; Thien-Phong Vu Manh; Andreia Mendes; Jessica Perego; Marisa Reverendo; Voahirana Camosseto; Marc Dalod; Tobias Weil; Manuel A. S. Santos; Evelina Gatti; Philippe Pierre

In innate immune responses, induction of type‐I interferons (IFNs) prevents virus spreading while viral replication is delayed by protein synthesis inhibition. We asked how cells perform these apparently contradictory activities. Using single fibroblast monitoring by flow cytometry and mathematical modeling, we demonstrate that type‐I IFN production is linked to cells ability to enter dsRNA‐activated PKR‐dependent translational arrest and then overcome this inhibition by decreasing eIF2α phosphorylation through phosphatase 1c cofactor GADD34 (Ppp1r15a) expression. GADD34 expression, shown here to be dependent on the IRF3 transcription factor, is responsible for a biochemical cycle permitting pulse of IFN synthesis to occur in cells undergoing protein synthesis inhibition. Translation arrest is further demonstrated to be key for anti‐viral response by acting synergistically with MAVS activation to amplify TBK1 signaling and IFN‐β mRNA transcription, while GADD34‐dependent protein synthesis recovery contributes to the heterogeneous expression of IFN observed in dsRNA‐activated cells.

Collaboration


Dive into the Alexandre Dalet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benoît Van den Eynde

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Vincent Stroobant

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Nathalie Vigneron

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Nuno Cláudio

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexis Combes

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Andreia Mendes

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Jessica Perego

Aix-Marseille University

View shared research outputs
Researchain Logo
Decentralizing Knowledge