Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandre de Kochko is active.

Publication


Featured researches published by Alexandre de Kochko.


Nature Biotechnology | 1998

Expression and inheritance of multiple transgenes in rice plants

Lili Chen; Philippe Marmey; Nigel J. Taylor; Jean-Paul Brizard; Celia R. Espinoza; Patricia D'Cruz; Hervé Huet; Shiping Zhang; Alexandre de Kochko; Roger N. Beachy; Claude M. Fauquet

The ability to control integration, inheritance, and expression of multiple transgenes is a prerequisite for manipulating biosynthetic pathways and complex agronomic characteristics in plants. One hundred and twenty-five independent transgenic rice plants were regenerated after cobombarding embryogenic tissues with a mixture of 14 different pUC-based plasmids. Eighty-five percent of the R0 plants contained more than two, and 17% more than nine, of the target genes. Plants containing multiple transgenes displayed normal morphologies and 63% set viable seed. Multigene cotransformation efficiency was correlated with the ratio in which the plasmids were mixed with respect to the selectable marker. All target genes had an equal chance of integration, indicating that the nature of the coding region had no effect on the efficiency of integration. Three plant lines containing 11, 10, and 9 transgenes, respectively, were analyzed for patterns of integration and inheritance until the R3 generation. Integration of multiple transgenes occurred at either one or two genetic loci, with inheritance conforming to a 3:1 Mendelian ratio. Coexpression of four marker genes was investigated until the R2 generation.


Science | 2014

The coffee genome provides insight into the convergent evolution of caffeine biosynthesis

Lorenzo Carretero-Paulet; Alexis Dereeper; Gaëtan Droc; Romain Guyot; Marco Pietrella; Chunfang Zheng; Adriana Alberti; François Anthony; Giuseppe Aprea; Jean-Marc Aury; Pascal Bento; Maria Bernard; Stéphanie Bocs; Claudine Campa; Alberto Cenci; Marie Christine Combes; Dominique Crouzillat; Corinne Da Silva; Loretta Daddiego; Fabien De Bellis; Stéphane Dussert; Olivier Garsmeur; Thomas Gayraud; Valentin Guignon; Katharina Jahn; Véronique Jamilloux; Thierry Joët; Karine Labadie; Tianying Lan; Julie Leclercq

Coffee, tea, and chocolate converge Caffeine has evolved multiple times among plant species, but no one knows whether these events involved similar genes. Denoeud et al. sequenced the Coffea canephora (coffee) genome and identified a conserved gene order (see the Perspective by Zamir). Although this species underwent fewer genome duplications than related species, the relevant caffeine genes experienced tandem duplications that expanded their numbers within this species. Scientists have seen similar but independent expansions in distantly related species of tea and cacao, suggesting that caffeine might have played an adaptive role in coffee evolution. Science, this issue p. 1181; see also p. 1124 The genetic origins of coffee’s constituents reveal intriguing links to cacao and tea. Coffee is a valuable beverage crop due to its characteristic flavor, aroma, and the stimulating effects of caffeine. We generated a high-quality draft genome of the species Coffea canephora, which displays a conserved chromosomal gene order among asterid angiosperms. Although it shows no sign of the whole-genome triplication identified in Solanaceae species such as tomato, the genome includes several species-specific gene family expansions, among them N-methyltransferases (NMTs) involved in caffeine production, defense-related genes, and alkaloid and flavonoid enzymes involved in secondary compound synthesis. Comparative analyses of caffeine NMTs demonstrate that these genes expanded through sequential tandem duplications independently of genes from cacao and tea, suggesting that caffeine in eudicots is of polyphyletic origin.


Plant Cell Reports | 1993

An improved rice transformation system using the biolistic method

Liangcai Li; Rongda Qu; Alexandre de Kochko; Claude M. Fauquet; Roger N. Beachy

Immature embryos and embryogenic calli of rice, both japonica and indica subspecies, were bombarded with tungsten particles coated with plasmid DNA that contained a gene encoding hygromycin phosphotransferase (HPH, conferring hygromycin resistance) driven by the CaMV 35S promoter or Agrobactenum tumefaciens NOS promoter. Putatively transformed cell clusters were identified from the bombarded tissues 2 weeks after selection on hygromycin B. By separating these cell clusters from each other, and by stringent selection not only at the callus growth stage but also during regeneration and plantlet growth, the overall transformation and selection efficiencies were substantially improved over those previously reported. From the most responsive cultivar used in these studies, an average of one transgenic plant was produced from 1.3 immature embryos or from 5 pieces of embryogenic calli bombarded. Integration of the introduced gene into the plant genome, and inheritance to the offspring were demonstrated. By using this procedure, we have produced several hundred transgenic plants. The procedure described here provides a simple method for improving transformation and selection efficiencies in rice and may be applicable to other monocots.


Plant Molecular Biology | 1996

Isolation and expression in transgenic tobacco and rice plants, of the cassava vein mosaic virus (CVMV) promoter

Bertrand Verdaguer; Alexandre de Kochko; Roger N. Beachy; Claude M. Fauquet

The cassava vein mosaic virus (CVMV) is a double stranded DNA virus which infects cassava plants (Manihot esculenta Crantz) and has been characterized as a plant pararetrovirus belonging to the caulimovirus subgroup. Two DNA fragments, CVP1 of 388 nucleotides from position -368 to +20 and CVP2 of 511 nucleotides from position -443 to +72, were isolated from the viral genome and fused to theuidA reporter gene to test promoter expression. The transcription start site of the viral promoter was determined using RNA isolated from transgenic plants containing the CVMV promoter:uidA fusion gene. Both promoter fragments were able to cause high levels of gene expression in protoplasts isolated from cassava and tobacco cell suspensions. The expression pattern of the CVMV promoters was analyzed in transgenic tobacco and rice plants, and revealed that the GUS staining pattern was similar for each construct and in both plants. The two promoter fragments were active in all plant organs tested and in a variety of cell types, suggesting a near constitutive pattern of expression. In both tobacco and rice plants, GUS activity was highest in vascular elements, in leaf mesophyll cells, and in root tips.


Plant Molecular Biology | 1998

Functional organization of the cassava vein mosaic virus (CsVMV) promoter

Bertrand Verdaguer; Alexandre de Kochko; Charles I. Fux; Roger N. Beachy; Claude M. Fauquet

Cassava vein mosaic virus (CsVMV) is a pararetrovirus that infects cassava plants in Brazil. A promoter fragment isolated from CsVMV, comprising nucleotides -443 to +72, was previously shown to direct strong constitutive gene expression in transgenic plants. Here we report the functional architecture of the CsVMV promoter fragment. A series of promoter deletion mutants were fused to the coding sequence of uidA reporter gene and the chimeric genes were introduced into transgenic tobacco plants. Promoter activity was monitored by histochemical and quantitative assays of β-glucuronidase activity (GUS). We found that the promoter fragment is made up of different regions that confer distinct tissue-specific expression of the gene. The region encompassing nucleotides -222 to -173 contains cis elements that control promoter expression in green tissues and root tips. Our results indicate that a consensus as1 element and a GATA motif located within this region are essential for promoter expression in those tissues. Expression from the CsVMV promoter in vascular elements is directed by the region encompassing nucleotides -178 to -63. Elements located between nucleotides -149 and -63 are also required to activate promoter expression in green tissues suggesting a combinatorial mode of regulation. Within the latter region, a 43 bp fragment extending from nucleotide -141 to -99 was shown to interact with a protein factor extracted from nuclei of tobacco seedlings. This fragment showed no sequence homology with other pararetrovirus promoters and hence may contain CsVMV-specific regulatory cis elements.


Molecular Breeding | 1999

Rice plant (Oryza sativa L.) containing rice tungro spherical virus (RTSV) coat protein transgenes are resistant to virus infection.

Elumalai Sivamani; Hervé Huet; Ping Shen; Ching Ang Ong; Alexandre de Kochko; Claude M. Fauquet; Roger N. Beachy

The coat protein (CP) genes CP1, CP2 and CP3 of Rice tungro spherical virus (RTSV) were introduced individually or together to indica and/or japonica rice cells by particle bombardment and transgenic plants were produced. Plants derived from selfed progeny of the primary transformants were subjected to virus inoculation via leafhoppers, the natural vector of the virus. Sixteen out of the nineteen selected transgenic plant lines, as well as their R1, R2 and/or R3 progeny that contained the target gene, accumulated transcripts of the chimeric CP gene(s) by RNA blot analysis. We obtained evidence of moderate levels of protection to RTSV infection, ranging from 17% to 73% of seedlings that escaped infection and a significant delay of virus replication under greenhouse conditions in plant lines that expressed the RTSV-CP1, CP2 and CP3 genes singly or together. There was not an additive effect on resistance when more than one CP gene is expressed. This study is the first to report pathogen-derived resistance to infection by RTSV, one of the two viruses that are involved in rice tungro disease. It is also the first example of CP-mediated protection against a virus that contains more than one CP gene from the same virus.


Plant Cell Reports | 1994

Partial desiccation of mature embryo-derived calli, a simple treatment that dramatically enhances the regeneration ability of indica rice.

Iann Rance; Wenzhong Tian; Helena Mathews; Alexandre de Kochko; Roger N. Beachy; Claude M. Fauquet

Regeneration of indica rice varieties remains a limiting factor for researchers undertaking rice Iransformation experiments. As reported for japonica rice and other crops, partial desiccation of indica rice calli dramatically promotes organogenesis and leads to high regeneration ability. We are now able to obtain 66.5%, 61.1% and 73.7% of calli that regenerate plants for the indica varieties TN1, IR72 and IR64 whereas in non desiccated controls only 30.0%, 15.5% and 18.7% of calli regenerated, respectively. Plants obtained were phenotypically normal and 50% were highly fertile. Partial desiccation is a reliable and simple method for improving indica rice regeneration. It also shortens the time of in vitro culture.


New Phytologist | 2009

Metabolic pathways in tropical dicotyledonous albuminous seeds: Coffea arabica as a case study

Thierry Joët; Andréina Laffargue; Jordi Salmona; Sylvie Doulbeau; Frédéric Descroix; Benoît Bertrand; Alexandre de Kochko; Stéphane Dussert

The genomic era facilitates the understanding of how transcriptional networks are interconnected to program seed development and filling. However, to date, little information is available regarding dicot seeds with a transient perisperm and a persistent, copious endosperm. Coffea arabica is the subject of increasing genomic research and is a model for nonorthodox albuminous dicot seeds of tropical origin. The aim of this study was to reconstruct the metabolic pathways involved in the biosynthesis of the main coffee seed storage compounds, namely cell wall polysaccharides, triacylglycerols, sucrose, and chlorogenic acids. For this purpose, we integrated transcriptomic and metabolite analyses, combining real-time RT-PCR performed on 137 selected genes (of which 79 were uncharacterized in Coffea) and metabolite profiling. Our map-drawing approach derived from model plants enabled us to propose a rationale for the peculiar traits of the coffee endosperm, such as its unusual fatty acid composition, remarkable accumulation of chlorogenic acid and cell wall polysaccharides. Comparison with the developmental features of exalbuminous seeds described in the literature revealed that the two seed types share important regulatory mechanisms for reserve biosynthesis, independent of the origin and ploidy level of the storage tissue.


Plant Molecular Biology | 2008

Deciphering transcriptional networks that govern Coffea arabica seed development using combined cDNA array and real-time RT-PCR approaches

Jordi Salmona; Stéphane Dussert; Frédéric Descroix; Alexandre de Kochko; Benoît Bertrand; Thierry Joët

Due to its economic importance, Coffea arabica is becoming the subject of increasing genomic research and, in particular, the genes involved in the final chemical composition of the bean and the sensorial quality of the coffee beverage. The aim of the present study was to decipher the transcriptional networks that govern the development of the C. arabica seed, a model for non-orthodox albuminous seeds of tropical origin. For this purpose, we developed a transcriptomic approach combining two techniques: targeted cDNA arrays, containing 266 selected candidate gene sequences, and real-time RT-PCR on a large subset of 111 genes. The combination of the two techniques allowed us to limit detection of false positives and to reveal the advantages of using large real-time RT-PCR screening. Multivariate analysis was conducted on both datasets and results were broadly convergent. First, principle component analysis (PCA) revealed a dramatic re-programming of the transcriptional machinery between early cell division and elongation, storage and maturation phases. Second, hierarchical clustering analysis (HCA) led to the identification of 11 distinct patterns of gene expression during seed development as well as to the detection of genes expressed at specific developmental stages that can be used as functional markers of phenological changes. In addition, this study led to the description of gene expression profiles for quality-related genes, most of them formerly uncharacterised in Coffea. Their involvement in storage compound synthesis and accumulation during endosperm development and final metabolic re-adjustments during maturation is discussed.


Plant Molecular Biology | 2007

Functional characterization of two p-coumaroyl ester 3′-hydroxylase genes from coffee tree: evidence of a candidate for chlorogenic acid biosynthesis

Venkataramaiah Mahesh; Rachel Million-Rousseau; Pascaline Ullmann; Nathalie Chabrillange; José Bustamante; Laurence Mondolot; Marc Morant; M. Noirot; Serge Hamon; Alexandre de Kochko; Danièle Werck-Reichhart; Claudine Campa

Chlorogenic acid (5-CQA) is one of the major soluble phenolic compounds that is accumulated in coffee green beans. With other hydroxycinnamoyl quinic acids (HQAs), this compound is accumulated in particular in green beans of the cultivated species Coffea canephora. Recent work has indicated that the biosynthesis of 5-CQA can be catalyzed by a cytochrome P450 enzyme, CYP98A3 from Arabidopsis. Two full-length cDNA clones (CYP98A35 and CYP98A36) that encode putative p-coumaroylester 3′-hydroxylases (C3′H) were isolated from C. canephora cDNA libraries. Recombinant protein expression in yeast showed that both metabolized p-coumaroyl shikimate at similar rates, but that only one hydroxylates the chlorogenic acid precursor p-coumaroyl quinate. CYP98A35 appears to be the first C3′H capable of metabolising p-coumaroyl quinate and p-coumaroyl shikimate with the same efficiency. We studied the expression patterns of both genes on 4-month old C. canephora plants and found higher transcript levels in young and in highly vascularized organs for both genes. Gene expression and HQA content seemed to be correlated in these organs. Histolocalization and immunolocalization studies revealed similar tissue localization for caffeoyl quinic acids and p-coumaroylester 3′-hydroxylases. The results indicated that HQA biosynthesis and accumulation occurred mainly in the shoot tip and in the phloem of the vascular bundles. The lack of correlation between gene expression and HQA content observed in some organs is discussed in terms of transport and accumulation mechanisms.

Collaboration


Dive into the Alexandre de Kochko's collaboration.

Top Co-Authors

Avatar

Serge Hamon

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Perla Hamon

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Valérie Poncet

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Claudine Campa

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roger N. Beachy

Donald Danforth Plant Science Center

View shared research outputs
Top Co-Authors

Avatar

Claude M. Fauquet

Donald Danforth Plant Science Center

View shared research outputs
Top Co-Authors

Avatar

Christine Tranchant-Dubreuil

Institut de recherche pour le développement

View shared research outputs
Researchain Logo
Decentralizing Knowledge