Alexandre F. Ramos
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexandre F. Ramos.
PLOS Genetics | 2013
Ah-Ram Kim; Carlos Martinez; John Ionides; Alexandre F. Ramos; Michael Ludwig; Nobuo Ogawa; David H. Sharp; John Reinitz
Rearrangements of about 2.5 kilobases of regulatory DNA located 5′ of the transcription start site of the Drosophila even-skipped locus generate large-scale changes in the expression of even-skipped stripes 2, 3, and 7. The most radical effects are generated by juxtaposing the minimal stripe enhancers MSE2 and MSE3 for stripes 2 and 3 with and without small “spacer” segments less than 360 bp in length. We placed these fusion constructs in a targeted transformation site and obtained quantitative expression data for these transformants together with their controlling transcription factors at cellular resolution. These data demonstrated that the rearrangements can alter expression levels in stripe 2 and the 2–3 interstripe by a factor of more than 10. We reasoned that this behavior would place tight constraints on possible rules of genomic cis-regulatory logic. To find these constraints, we confronted our new expression data together with previously obtained data on other constructs with a computational model. The model contained representations of thermodynamic protein–DNA interactions including steric interference and cooperative binding, short-range repression, direct repression, activation, and coactivation. The model was highly constrained by the training data, which it described within the limits of experimental error. The model, so constrained, was able to correctly predict expression patterns driven by enhancers for other Drosophila genes; even-skipped enhancers not included in the training set; stripe 2, 3, and 7 enhancers from various Drosophilid and Sepsid species; and long segments of even-skipped regulatory DNA that contain multiple enhancers. The model further demonstrated that elevated expression driven by a fusion of MSE2 and MSE3 was a consequence of the recruitment of a portion of MSE3 to become a functional component of MSE2, demonstrating that cis-regulatory “elements” are not elementary objects.
Bulletin of Mathematical Biology | 2013
Guilherme C. P. Innocentini; Michael Forger; Alexandre F. Ramos; Ovidiu Radulescu; José Eduardo M. Hornos
We consider a general class of mathematical models for stochastic gene expression where the transcription rate is allowed to depend on a promoter state variable that can take an arbitrary (finite) number of values. We provide the solution of the master equations in the stationary limit, based on a factorization of the stochastic transition matrix that separates timescales and relative interaction strengths, and we express its entries in terms of parameters that have a natural physical and/or biological interpretation. The solution illustrates the capacity of multiple states promoters to generate multimodal distributions of gene products, without the need for feedback. Furthermore, using the example of a three states promoter operating at low, high, and intermediate expression levels, we show that using multiple states operons will typically lead to a significant reduction of noise in the system. The underlying mechanism is that a three-states promoter can change its level of expression from low to high by passing through an intermediate state with a much smaller increase of fluctuations than by means of a direct transition.
Physical Review E | 2016
Guilherme N. Prata; José Eduardo M. Hornos; Alexandre F. Ramos
We examine immunostaining experimental data for the formation of stripe 2 of even-skipped (eve) transcripts on D. melanogaster embryos. An estimate of the factor converting immunofluorescence intensity units into molecular numbers is given. The analysis of the eve dynamics at the region of stripe 2 suggests that the promoter site of the gene has two distinct regimes: an earlier phase when it is predominantly activated until a critical time when it becomes mainly repressed. That suggests proposing a stochastic binary model for gene transcription on D. melanogaster embryos. Our model has two random variables: the transcripts number and the state of the source of mRNAs given as active or repressed. We are able to reproduce available experimental data for the average number of transcripts. An analysis of the random fluctuations on the number of eves and their consequences on the spatial precision of stripe 2 is presented. We show that the position of the anterior or posterior borders fluctuate around their average position by ∼1% of the embryo length, which is similar to what is found experimentally. The fitting of data by such a simple model suggests that it can be useful to understand the functions of randomness during developmental processes.
International Journal of Modern Physics B | 2012
Yuefan Deng; Alexandre F. Ramos; José Eduardo M. Hornos
We present a family of networks whose local interconnection topologies are generated by the root vectors of a semi-simple complex Lie algebra. Cartan classification theorem of those algebras ensures those families of interconnection topologies to be exhaustive. The global arrangement of the network is defined in terms of integer or half-integer weight lattices. The mesh or torus topologies that network millions of processing cores, such as those in the IBM BlueGene series, are the simplest member of that category. The symmetries of the root systems of an algebra, manifested by their Weyl group, lends great convenience for the design and analysis of hardware architecture, algorithms and programs.
Scientific Reports | 2017
Mauro César Cafundó Morais; Izabella Stuhl; Alan U. Sabino; Willian Wagner Lautenschlager; Alexandre Sarmento Queiroga; Tharcisio Citrangulo Tortelli Jr.; Roger Chammas; Yuri Suhov; Alexandre F. Ramos
Contact inhibition is a central feature orchestrating cell proliferation in culture experiments; its loss is associated with malignant transformation and tumorigenesis. We performed a co-culture experiment with human metastatic melanoma cell line (SKMEL- 147) and immortalized keratinocyte cells (HaCaT). After 8 days a spatial pattern was detected, characterized by the formation of clusters of melanoma cells surrounded by keratinocytes constraining their proliferation. In addition, we observed that the proportion of melanoma cells within the total population has increased. To explain our results we propose a spatial stochastic model (following a philosophy of the Widom-Rowlinson model from Statistical Physics and Molecular Chemistry) which considers cell proliferation, death, migration, and cell-to-cell interaction through contact inhibition. Our numerical simulations demonstrate that loss of contact inhibition is a sufficient mechanism, appropriate for an explanation of the increase in the proportion of tumor cells and generation of spatial patterns established in the conducted experiments.
BMC Systems Biology | 2017
Kenneth A. Barr; Carlos Alberto Martinez; Jennifer R. Moran; Ah-Ram Kim; Alexandre F. Ramos; John Reinitz
BackgroundModels that incorporate specific chemical mechanisms have been successful in describing the activity of Drosophila developmental enhancers as a function of underlying transcription factor binding motifs. Despite this, the minimum set of mechanisms required to reconstruct an enhancer from its constituent parts is not known. Synthetic biology offers the potential to test the sufficiency of known mechanisms to describe the activity of enhancers, as well as to uncover constraints on the number, order, and spacing of motifs.ResultsUsing a functional model and in silico compensatory evolution, we generated putative synthetic even-skipped stripe 2 enhancers with varying degrees of similarity to the natural enhancer. These elements represent the evolutionary trajectories of the natural stripe 2 enhancer towards two synthetic enhancers designed ab initio. In the first trajectory, spatially regulated expression was maintained, even after more than a third of binding sites were lost. In the second, sequences with high similarity to the natural element did not drive expression, but a highly diverged sequence about half the length of the minimal stripe 2 enhancer drove ten times greater expression. Additionally, homotypic clusters of Zelda or Stat92E motifs, but not Bicoid, drove expression in developing embryos.ConclusionsHere, we present a functional model of gene regulation to test the degree to which the known transcription factors and their interactions explain the activity of the Drosophila even-skipped stripe 2 enhancer. Initial success in the first trajectory showed that the gene regulation model explains much of the function of the stripe 2 enhancer. Cases where expression deviated from prediction indicates that undescribed factors likely act to modulate expression. We also showed that activation driven Bicoid and Hunchback is highly sensitive to spatial organization of binding motifs. In contrast, Zelda and Stat92E drive expression from simple homotypic clusters, suggesting that activation driven by these factors is less constrained. Collectively, the 40 sequences generated in this work provides a powerful training set for building future models of gene regulation.
Clinics | 2018
Alan U. Sabino; Miguel Felipe Silva Vasconcelos; Misaki Yamada Sittoni; Willian Wagner Lautenschlager; Alexandre Sarmento Queiroga; Mauro César Cafundó Morais; Alexandre F. Ramos
The effects of randomness, an unavoidable feature of intracellular environments, are observed at higher hierarchical levels of living matter organization, such as cells, tissues, and organisms. Additionally, the many compounds interacting as a well-orchestrated network of reactions increase the difficulties of assessing these systems using only experiments. This limitation indicates that elucidation of the dynamics of biological systems is a complex task that will benefit from the establishment of principles to help describe, categorize, and predict the behavior of these systems. The theoretical machinery already available, or ones to be discovered to help solve biological problems, might play an important role in these processes. Here, we demonstrate the application of theoretical tools by discussing some biological problems that we have approached mathematically: fluctuations in gene expression and cell proliferation in the context of loss of contact inhibition. We discuss the methods that have been employed to provide the reader with a biologically motivated phenomenological perspective of the use of theoretical methods. Finally, we end this review with a discussion of new research perspectives motivated by our results.
Biochimica et Biophysica Acta | 2018
Andréia Hanada Otake; Renata de Freitas Saito; Ana Paula Marques Duarte; Alexandre F. Ramos; Roger Chammas
Melanomas often accumulate gangliosides, sialic acid-containing glycosphingolipids found in the outer leaflet of plasma membranes, as disialoganglioside GD3 and its derivatives. Here, we have transfected the GD3 synthase gene (ST8Sia I) in a normal melanocyte cell line in order to evaluate changes in the biological behavior of non-transformed cells. GD3-synthase expressing cells converted GM3 into GD3 and accumulated both GD3 and its acetylated form, 9-O-acetyl-GD3. Melanocytes were rendered more migratory on laminin-1 surfaces. Cell migration studies using the different transfectants, either treated or not with the glucosylceramide synthase inhibitor d-1-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (PPPP), allowed us to show that while GM3 is a negative regulator of melanocyte migration, GD3 increases it. We showed that gangliosides were shed to the matrix by migrating cells and that GD3 synthase transfected cells shed extracellular vesicles (EVs) enriched in GD3. EVs enriched in GD3 stimulated cell migration of GD3 negative cells, as observed in time lapse microscopy studies. Otherwise, EVs shed by GM3+veGD3-ve cells impaired migration and diminished cell velocity in cells overexpressing GD3. The balance of antimigratory GM3 and promigratory GD3 gangliosides in melanocytes could be altered not only by the overexpression of enzymes such as ST8Sia I, but also by the horizontal transfer of ganglioside enriched extracellular vesicles. This study highlights that extracellular vesicles transfer biological information also through their membrane components, which include a variety of glycosphingolipids remodeled in disease states such as cancer.
bioRxiv | 2017
Romain Yvinec; Luiz Guilherme S. da Silva; Guilherme N. Prata; John Reinitz; Alexandre F. Ramos
Recent experimental data on the transcription dynamics of eve gene stripe two formation of Drosophila melanogaster embryos occurs in bursts of multiple sizes and durations. That has motivated the proposition of a transcription model having multiple ON states for the promoter of the eve gene each of them characterized by different synthesis rate. To understand the role of multiple ON states on gene transcription we approach the exact solutions for a two state stochastic model for gene transcription in D. melanogaster embryos and derive its bursting limit. Simulations based on the Gillespie algorithm at the bursting limit show the occurrence of bursts of multiple sizes and durations. Based on our theoretical approach, we interpret the aforementioned experimental data as a demonstration of the intrinsic stochasticity of the transcriptional processes in fruit fly embryos. Then, we conceive the experimental arrangement to determine when gene transcription has multiple ON promoter state in a noisy environment.
Journal of Chemical Physics | 2015
Guilherme C. P. Innocentini; Alexandre F. Ramos; José Eduardo M. Hornos
The comment presents the complete steady state solution of the model introduced on ”Steady-state fluctuations of a genetic feedback loop: An exact solution” [Grima et al. J. Chem. Phys. 137, 035104 (2012)]. A closed form for the normalization constant is obtained and hence the explicit calculation of the moments as functions of the parameters is possible. We discuss the meaning of an exact solution to a differential equation and the construction of a model to the understanding of a phenomenon.