Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandre Henriques is active.

Publication


Featured researches published by Alexandre Henriques.


Frontiers in Neuroscience | 2010

Neurotrophic Growth Factors for the Treatment of Amyotrophic Lateral Sclerosis: Where Do We Stand?

Alexandre Henriques; Claudia Pitzer; Armin Schneider

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that results in progressive loss of motoneurons, motor weakness and death within 3–5 years after disease onset. Therapeutic options remain limited despite substantial number of approaches that have been tested clinically. Many neurotrophic growth factors are known to promote the survival of neurons and foster regeneration in the central nervous system. Various neurotrophic factors have been investigated pre-clinically and clinically for the treatment of ALS. Although pre-clinical data appeared promising, no neurotrophic factors succeeded yet in a clinical phase III trial. In this review we discuss the rationale behind those factors, possible reasons for clinical failures, and argue for a renewal of hope in this powerful class of drugs for the treatment of ALS.


Embo Molecular Medicine | 2015

A metabolic switch toward lipid use in glycolytic muscle is an early pathologic event in a mouse model of amyotrophic lateral sclerosis.

Lavinia Palamiuc; Anna Schlagowski; Shyuan T. Ngo; Aurélia Vernay; Sylvie Dirrig-Grosch; Alexandre Henriques; Anne-Laurence Boutillier; Joffrey Zoll; Andoni Echaniz-Laguna; Jean-Philippe Loeffler; Frédérique René

Amyotrophic lateral sclerosis (ALS) is the most common fatal motor neuron disease in adults. Numerous studies indicate that ALS is a systemic disease that affects whole body physiology and metabolic homeostasis. Using a mouse model of the disease (SOD1G86R), we investigated muscle physiology and motor behavior with respect to muscle metabolic capacity. We found that at 65 days of age, an age described as asymptomatic, SOD1G86R mice presented with improved endurance capacity associated with an early inhibition in the capacity for glycolytic muscle to use glucose as a source of energy and a switch in fuel preference toward lipids. Indeed, in glycolytic muscles we showed progressive induction of pyruvate dehydrogenase kinase 4 expression. Phosphofructokinase 1 was inhibited, and the expression of lipid handling molecules was increased. This mechanism represents a chronic pathologic alteration in muscle metabolism that is exacerbated with disease progression. Further, inhibition of pyruvate dehydrogenase kinase 4 activity with dichloroacetate delayed symptom onset while improving mitochondrial dysfunction and ameliorating muscle denervation. In this study, we provide the first molecular basis for the particular sensitivity of glycolytic muscles to ALS pathology.


Molecular Therapy | 2011

CNS-targeted Viral Delivery of G-CSF in an Animal Model for ALS: Improved Efficacy and Preservation of the Neuromuscular Unit

Alexandre Henriques; Claudia Pitzer; Tanjew Dittgen; Matthias Klugmann; Luc Dupuis; Armin Schneider

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of motoneurons. We have recently uncovered a new neurotrophic growth factor, granulocyte-colony stimulating factor (G-CSF), which protects α-motoneurons, improves functional outcome, and increases life expectancy of SOD-1 (G93A) mice when delivered subcutaneously. However, chronic systemic delivery of G-CSF is complicated by elevation of neutrophilic granulocytes. Here, we used adeno-associated virus (AAV) to directly target and confine G-CSF expression to the spinal cord. Whereas intramuscular injection of AAV failed to transduce motoneurons retrogradely, and caused a high systemic load of G-CSF, intraspinal delivery led to a highly specific enrichment of G-CSF in the spinal cord with moderate peripheral effects. Intraspinal delivery improved motor functions, delayed disease progression, and increased survival by 10%, longer than after systemic delivery. Mechanistically, we could show that G-CSF in addition to rescuing motoneurons improved neuromuscular junction (NMJ) integrity and enhanced motor axon regeneration after nerve crush injury. Collectively, our results show that intraspinal delivery improves efficacy of G-CSF treatment in an ALS mouse model while minimizing the systemic load of G-CSF, suggesting a new therapeutic option for ALS treatment.


Frontiers in Cellular Neuroscience | 2014

A plural role for lipids in motor neuron diseases: energy, signaling and structure

Florent Schmitt; Ghulam Hussain; Luc Dupuis; Jean-Philippe Loeffler; Alexandre Henriques

Motor neuron diseases (MNDs) are characterized by selective death of motor neurons and include mainly adult-onset amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Neurodegeneration is not the single pathogenic event occurring during disease progression. There are multiple lines of evidence for the existence of defects in lipid metabolism at peripheral level. For instance, hypermetabolism is well characterized in ALS, and dyslipidemia correlates with better prognosis in patients. Lipid metabolism plays also a role in other MNDs. In SMA, misuse of lipids as energetic nutrients is described in patients and in related animal models. The composition of structural lipids in the central nervous system is modified, with repercussion on membrane fluidity and on cell signaling mediated by bioactive lipids. Here, we review the main epidemiologic and mechanistic findings that link alterations of lipid metabolism and motor neuron degeneration, and we discuss the rationale of targeting these modifications for therapeutic management of MNDs.


Brain | 2013

Degeneration of serotonergic neurons in amyotrophic lateral sclerosis: a link to spasticity

Christel Dentel; Lavinia Palamiuc; Alexandre Henriques; Béatrice Lannes; Odile Spreux-Varoquaux; Lise Gutknecht; Frédérique René; Andoni Echaniz-Laguna; Jose-Luis Gonzalez de Aguilar; Klaus-Peter Lesch; Vincent Meininger; Jean-Philippe Loeffler; Luc Dupuis

Spasticity is a common and disabling symptom observed in patients with central nervous system diseases, including amyotrophic lateral sclerosis, a disease affecting both upper and lower motor neurons. In amyotrophic lateral sclerosis, spasticity is traditionally thought to be the result of degeneration of the upper motor neurons in the cerebral cortex, although degeneration of other neuronal types, in particular serotonergic neurons, might also represent a cause of spasticity. We performed a pathology study in seven patients with amyotrophic lateral sclerosis and six control subjects and observed that central serotonergic neurons suffer from a degenerative process with prominent neuritic degeneration, and sometimes loss of cell bodies in patients with amyotrophic lateral sclerosis. Moreover, distal serotonergic projections to spinal cord motor neurons and hippocampus systematically degenerated in patients with amyotrophic lateral sclerosis. In SOD1 (G86R) mice, a transgenic model of amyotrophic lateral sclerosis, serotonin levels were decreased in brainstem and spinal cord before onset of motor symptoms. Furthermore, there was noticeable atrophy of serotonin neuronal cell bodies along with neuritic degeneration at disease onset. We hypothesized that degeneration of serotonergic neurons could underlie spasticity in amyotrophic lateral sclerosis and investigated this hypothesis in vivo using tail muscle spastic-like contractions in response to mechanical stimulation as a measure of spasticity. In SOD1 (G86R) mice, tail muscle spastic-like contractions were observed at end-stage. Importantly, they were abolished by 5-hydroxytryptamine-2b/c receptors inverse agonists. In line with this, 5-hydroxytryptamine-2b receptor expression was strongly increased at disease onset. In all, we show that serotonergic neurons degenerate during amyotrophic lateral sclerosis, and that this might underlie spasticity in mice. Further research is needed to determine whether inverse agonists of 5-hydroxytryptamine-2b/c receptors could be of interest in treating spasticity in patients with amyotrophic lateral sclerosis.


PLOS ONE | 2010

Characterization of a novel SOD-1(G93A) transgenic mouse line with very decelerated disease development.

Alexandre Henriques; Claudia Pitzer; Armin Schneider

Amyotrophic Lateral Sclerosis (ALS) is a fatal motoneuron disease, characterized by progressive weakness, muscle wasting and death ensuing 3–5 years after diagnosis. The etiology of ALS is complex and therapeutic approaches rely mostly on transgenic animal models with SOD-1 mutations. Most frequently employed is a mouse line transgenic for SOD-1 (SOD-1 Tg) that contains a point mutation at amino acid position 93 (G->A), present in patients suffering from a familial form of amyotrophic lateral sclerosis. Here we report on a SOD-1 (G93A) Tg mouse line with abnormally delayed onset of disease and prolonged survival. This phenotype arose spontaneously in our colony of the classic SOD-1 (G93A) line. We found that the copy number of the SOD-1 transgene was drastically decreased. We established a new breeding colony, the SOD-1 (G93A)PS line (PS for prolonged survival) where the phenotype is stably inherited for 4 generations now. The mice develop symptoms at an age of approximately 12 months and die at 15 months of age. The delayed development of disease may more closely mimic human pathophysiology, and studying drug effects in this model may yield added confidence for potential efficacy of ALS drug candidates.


Human Molecular Genetics | 2015

Amyotrophic lateral sclerosis and denervation alter sphingolipids and up-regulate glucosylceramide synthase

Alexandre Henriques; Vincent Croixmarie; David A. Priestman; Angela Rosenbohm; Sylvie Dirrig-Grosch; Eleonora D'Ambra; Mylene Huebecker; Ghulam Hussain; Claire Boursier-Neyret; Andoni Echaniz-Laguna; Albert C. Ludolph; Frances M. Platt; Bernard Walther; Michael Spedding; Jean-Philippe Loeffler; Jose-Luis Gonzalez de Aguilar

Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset disease characterized by upper and lower motor neuron degeneration, muscle wasting and paralysis. Growing evidence suggests a link between changes in lipid metabolism and ALS. Here, we used UPLC/TOF-MS to survey the lipidome in SOD1(G86R) mice, a model of ALS. Significant changes in lipid expression were evident in spinal cord and skeletal muscle before overt neuropathology. In silico analysis also revealed appreciable changes in sphingolipids including ceramides and glucosylceramides (GlcCer). HPLC analysis showed increased amounts of GlcCer and downstream glycosphingolipids (GSLs) in SOD1(G86R) muscle compared with wild-type littermates. Glucosylceramide synthase (GCS), the enzyme responsible for GlcCer biosynthesis, was up-regulated in muscle of SOD1(G86R) mice and ALS patients, and in muscle of wild-type mice after surgically induced denervation. Conversely, inhibition of GCS in wild-type mice, following transient peripheral nerve injury, reversed the overexpression of genes in muscle involved in oxidative metabolism and delayed motor recovery. GCS inhibition in SOD1(G86R) mice also affected the expression of metabolic genes and induced a loss of muscle strength and morphological deterioration of the motor endplates. These findings suggest that GSLs may play a critical role in ALS muscle pathology and could lead to the identification of new therapeutic targets.


Current Genomics | 2011

Can Transcriptomics Cut the Gordian Knot of Amyotrophic Lateral Sclerosis

Alexandre Henriques; Jose-Luis Gonzalez de Aguilar

Amyotrophic lateral sclerosis (ALS) is an adult-onset degenerative disease characterized by the loss of upper and lower motor neurons, progressive muscle atrophy, paralysis and death, which occurs within 2-5 years of diagnosis. Most cases appear sporadically but some are familial, usually inherited in an autosomal dominant pattern. It is postulated that the disease results from the combination of multiple pathogenic mechanisms, which affect not only motor neurons but also non-neuronal neighboring cells. Together with the understanding of this intriguing cell biology, important challenges in the field concern the design of effective curative treatments and the discovery of molecular biomarkers for early diagnosis and accurate monitoring of disease progression. During the last decade, transcriptomics has represented a promising approach to address these questions. In this review, we revisit the major findings of the numerous studies that analyzed global gene expression in tissues and cells from biopsy or post-mortem specimens of ALS patients and related animal models. These studies corroborated the implication of previously described disease pathways, and investigated the role of new genes in the pathological process. In addition, they also identified gene expression changes that could be used as candidate biomarkers for the diagnosis and follow-up of ALS. The limitations of these transcriptomics approaches will be also discussed.


Human Molecular Genetics | 2015

Low dietary protein content alleviates motor symptoms in mice with mutant dynactin/dynein-mediated neurodegeneration

Diana Wiesner; Jérôme Sinniger; Alexandre Henriques; Stéphane Dieterlé; Hans Peter Müller; Volker Rasche; Boris Ferger; Sylvie Dirrig-Grosch; Åsa Petersén; Paul Walther; Birgit Linkus; Jan Kassubek; Philip C. Wong; Albert C. Ludolph; Luc Dupuis

Mutations in components of the molecular motor dynein/dynactin lead to neurodegenerative diseases of the motor system or atypical parkinsonism. These mutations are associated with prominent accumulation of vesicles involved in autophagy and lysosomal pathways, and with protein inclusions. Whether alleviating these defects would affect motor symptoms remain unknown. Here, we show that a mouse model expressing low levels of disease linked-G59S mutant dynactin p150(Glued) develops motor dysfunction >8 months before loss of motor neurons or dopaminergic degeneration is observed. Abnormal accumulation of autophagosomes and protein inclusions were efficiently corrected by lowering dietary protein content, and this was associated with transcriptional upregulations of key players in autophagy. Most importantly this dietary modification partially rescued overall neurological symptoms in these mice after onset. Similar observations were made in another mouse strain carrying a point mutation in the dynein heavy chain gene. Collectively, our data suggest that stimulating the autophagy/lysosomal system through appropriate nutritional intervention has significant beneficial effects on motor symptoms of dynein/dynactin diseases even after symptom onset.


PLOS ONE | 2013

Systemic down-regulation of delta-9 desaturase promotes muscle oxidative metabolism and accelerates muscle function recovery following nerve injury.

Ghulam Hussain; Florent Schmitt; Alexandre Henriques; Thiebault Lequeu; Frédérique René; Françoise Bindler; Sylvie Dirrig-Grosch; Hugues Oudart; Lavinia Palamiuc; Marie-Hélène Metz-Boutigue; Luc Dupuis; Eric Marchioni; Jose-Luis Gonzalez de Aguilar; Jean-Philippe Loeffler

The progressive deterioration of the neuromuscular axis is typically observed in degenerative conditions of the lower motor neurons, such as amyotrophic lateral sclerosis (ALS). Neurodegeneration in this disease is associated with systemic metabolic perturbations, including hypermetabolism and dyslipidemia. Our previous gene profiling studies on ALS muscle revealed down-regulation of delta-9 desaturase, or SCD1, which is the rate-limiting enzyme in the synthesis of monounsaturated fatty acids. Interestingly, knocking out SCD1 gene is known to induce hypermetabolism and stimulate fatty acid beta-oxidation. Here we investigated whether SCD1 deficiency can affect muscle function and its restoration in response to injury. The genetic ablation of SCD1 was not detrimental per se to muscle function. On the contrary, muscles in SCD1 knockout mice shifted toward a more oxidative metabolism, and enhanced the expression of synaptic genes. Repressing SCD1 expression or reducing SCD-dependent enzymatic activity accelerated the recovery of muscle function after inducing sciatic nerve crush. Overall, these findings provide evidence for a new role of SCD1 in modulating the restorative potential of skeletal muscles.

Collaboration


Dive into the Alexandre Henriques's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luc Dupuis

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ghulam Hussain

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian R. Andres

François Rabelais University

View shared research outputs
Researchain Logo
Decentralizing Knowledge