Alexandre Lapene
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexandre Lapene.
Review of Scientific Instruments | 2013
Mohammad Bazargan; Alexandre Lapene; Bo Chen; Louis M. Castanier; Anthony R. Kovscek
In a conventional ramped temperature oxidation kinetics cell experiment, an electrical furnace is used to ramp temperature at a prescribed rate. Thus, the heating rate of a kinetics cell experiment is limited by furnace performance to heating rates of about 0.5-3 °C/min. A new reactor has been designed to overcome this limit. It uses an induction heating method to ramp temperature. Induction heating is fast and easily controlled. The new reactor covers heating rates from 1 to 30 °C/min. This is the first time that the oxidation profiles of a crude oil are available over such a wide range of heating rate. The results from an induction reactor and a conventional kinetics cell at roughly 2 °C/min are compared to illustrate consistency between the two reactors. The results at low heating rate are the same as the conventional kinetics cell. As presented in the paper, the new reactor couples well with the isoconversional method for interpretation of reaction kinetics.
Computational Geosciences | 2016
Julien Maes; Ann Muggeridge; Matthew D. Jackson; Michel Quintard; Alexandre Lapene
The in-situ upgrading (ISU) of bitumen and oil shale is a very challenging process to model numerically because of the large number of components that need to be modelled using a system of equations that are both highly non-linear and strongly coupled. Operator splitting methods are one way of potentially improving computational performance. Each numerical operator in a process is modelled separately, allowing the best solution method to be used for the given numerical operator. A significant drawback to the approach is that decoupling the governing equations introduces an additional source of numerical error, known as the splitting error. The best splitting method for modelling a given process minimises the splitting error whilst improving computational performance compared to a fully implicit approach. Although operator splitting has been widely used for the modelling of reactive-transport problems, it has not yet been applied to the modelling of ISU. One reason is that it is not clear which operator splitting technique to use. Numerous such techniques are described in the literature and each leads to a different splitting error. While this error has been extensively analysed for linear operators for a wide range of methods, the results cannot be extended to general non-linear systems. It is therefore not clear which of these techniques is most appropriate for the modelling of ISU. In this paper, we investigate the application of various operator splitting techniques to the modelling of the ISU of bitumen and oil shale. The techniques were tested on a simplified model of the physical system in which a solid or heavy liquid component is decomposed by pyrolysis into lighter liquid and gas components. The operator splitting techniques examined include the sequential split operator (SSO), the Strang-Marchuk split operator (SMSO) and the iterative split operator (ISO). They were evaluated on various test cases by considering the evolution of the discretization error as a function of the time-step size compared with the results obtained from a fully implicit simulation. We observed that the error was least for a splitting scheme where the thermal conduction was performed first, followed by the chemical reaction step and finally the heat and mass convection operator (SSO-CKA). This method was then applied to a more realistic model of the ISU of bitumen with multiple components, and we were able to obtain a speed-up of between 3 and 5.
Review of Scientific Instruments | 2018
Guenther Glatz; Alexandre Lapene; Louis M. Castanier; Anthony R. Kovscek
A conventional high-pressure/high-temperature experimental apparatus for combined geomechanical and flow-through testing of rocks is not X-ray compatible. Additionally, current X-ray transparent systems for computed tomography (CT) of cm-sized samples are limited to design temperatures below 180 °C. We describe a novel, high-temperature (>400 °C), high-pressure (>2000 psi/>13.8 MPa confining, >10 000 psi/>68.9 MPa vertical load) triaxial core holder suitable for X-ray CT scanning. The new triaxial system permits time-lapse imaging to capture the role of effective stress on fluid distribution and porous medium mechanics. System capabilities are demonstrated using ultimate compressive strength (UCS) tests of Castlegate sandstone. In this case, flooding the porous medium with a radio-opaque gas such as krypton before and after the UCS test improves the discrimination of rock features such as fractures. The results of high-temperature tests are also presented. A Uintah Basin sample of immature oil shale is heated from room temperature to 459 °C under uniaxial compression. The sample contains kerogen that pyrolyzes as temperature rises, releasing hydrocarbons. Imaging reveals the formation of stress bands as well as the evolution and connectivity of the fracture network within the sample as a function of time.
ECMOR XIV - 14th European Conference on the Mathematics of Oil Recovery | 2014
Julien Maes; Ann Muggeridge; Matthew D. Jackson; Michel Quintard; Alexandre Lapene
The In-Situ Upgrading (ISU) of bitumen and oil shale is a very challenging process to model numerically because a large number of components need to be modelled using a system of equations that are both highly non-linear and strongly coupled. Operator splitting methods are one way of potentially improving computational performance. Each numerical operator in a process is modelled separately, allowing the best solution method to be used for the given numerical operator. A significant drawback to the approach is that decoupling the governing equations introduces an additional source of numerical error, known as splitting error. Obviously the best splitting method for modelling a given process is the one that minimises the splitting error whilst improving computational performance over that obtained from using a fully implicit approach. Although operator splitting has been widely used for the modelling of reactive-transport problems, it has not yet been applied to the modelling of ISU. One reason is that it is not clear which operator splitting technique to use. Numerous such techniques are described in the literature and each leads to a different splitting error. While this error has been extensively analysed for linear operators for a wide range of methods, the results observed cannot be extended to general non-linear systems. It is therefore not clear which of these techniques is most appropriate for the modelling of ISU. In this paper we investigate the application of various operator splitting techniques to the modelling of the ISU of bitumen and oil shale. The techniques were tested on a simplified model of the physical system in which a solid or heavy liquid component is decomposed by pyrolysis into lighter liquid and gas components. The operator splitting techniques examined include the Sequential Split Operator (SSO), the Strang-Marchuk split operator (SMSO) and the Iterative Split Operator (ISO). They were evaluated on various test cases by considering the evolution of the discretization error as a function of the size of the time-step compared with the results obtained from a fully implicit simulation. We observed that the error was minimum for a splitting scheme where the thermal conduction was performed first, followed by the chemical reaction step and finally the heat and mass convection operator (SSO-CKA). This method was then applied to a more realistic model of the ISU of bitumen with multiple components.
Fluid Phase Equilibria | 2010
Alexandre Lapene; Dan Vladimir Nichita; Michel Quintard
SPE Western North American Region Meeting | 2011
Zhouyuan Zhu; Mohamad Bazargan; Alexandre Lapene; Margot Gerritsen; Louis M. Castanier; Anthony R. Kovscek
Energy & Fuels | 2011
Alexandre Lapene; Michel Quintard; Louis M. Castanier; Margot Gerritsen; Anthony R. Kovscek
Fuel | 2012
Hossein Fadaei; Mohammed Sennoune; Sylvain Salvador; Alexandre Lapene
Spe Reservoir Evaluation & Engineering | 2009
Alexandre Lapene; Louis M. Castanier; Michel Quintard; Arjan Matheus Kamp; Bernard Corre
Fuel | 2017
Julien Maes; Ann Muggeridge; Matthew D. Jackson; Michel Quintard; Alexandre Lapene