Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandre M. Anesio is active.

Publication


Featured researches published by Alexandre M. Anesio.


Trends in Ecology and Evolution | 2012

Glaciers and ice sheets as a biome

Alexandre M. Anesio; Johanna Laybourn-Parry

The tundra is the coldest biome described in typical geography and biology textbooks. Within the cryosphere, there are large expanses of ice in the Antarctic, Arctic and alpine regions that are not regarded as being part of any biome. During the summer, there is significant melt on the surface of glaciers, ice caps and ice shelves, at which point microbial communities become active and play an important role in the cycling of carbon and other elements within the cryosphere. In this review, we suggest that it is time to recognise the cryosphere as one of the biomes of Earth. The cryospheric biome encompasses extreme environments and is typified by truncated food webs dominated by viruses, bacteria, protozoa and algae with distinct biogeographical structures.


Applied and Environmental Microbiology | 2005

Effect of Humic Substance Photodegradation on Bacterial Growth and Respiration in Lake Water

Alexandre M. Anesio; Wilhelm Granéli; George R. Aiken; David J. Kieber; Kenneth Mopper

ABSTRACT This study addresses how humic substance (HS) chemical composition and photoreactivity affect bacterial growth, respiration, and growth efficiency (BGE) in lake water. Aqueous solutions of HSs from diverse aquatic environments representing different dissolved organic matter sources (autochthonous and allochthonous) were exposed to artificial solar UV radiation. These solutions were added to lake water passed through a 0.7-μm-pore-size filter (containing grazer-free lake bacteria) followed by dark incubation for 5, 43, and 65 h. For the 5-h incubation, several irradiated HSs inhibited bacterial carbon production (BCP) and this inhibition was highly correlated with H2O2 photoproduction. The H2O2 decayed in the dark, and after 43 h, nearly all irradiated HSs enhanced BCP (average 39% increase relative to nonirradiated controls, standard error = 7.5%, n = 16). UV exposure of HSs also increased bacterial respiration (by ∼18%, standard error = 5%, n = 4), but less than BCP, resulting in an average increase in BGE of 32% (standard error = 10%, n = 4). Photoenhancement of BCP did not correlate to HS bulk properties (i.e., elemental and chemical composition). However, when the photoenhancement of BCP was normalized to absorbance, several trends with HS origin and extraction method emerged. Absorbance-normalized hydrophilic acid and humic acid samples showed greater enhancement of BCP than hydrophobic acid and fulvic acid samples. Furthermore, absorbance-normalized autochthonous samples showed ∼10-fold greater enhancement of BCP than allochthonous-dominated samples, indicating that the former are more efficient photoproducers of biological substrates.


The ISME Journal | 2011

Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard

Arwyn Edwards; Alexandre M. Anesio; Sara Rassner; Birgit Sattler; Bryn Hubbard; William T. Perkins; Michael Young; Gareth W. Griffith

The diversity of highly active bacterial communities in cryoconite holes on three Arctic glaciers in Svalbard was investigated using terminal restriction fragment length polymorphism (T-RFLP) of the 16S rRNA locus. Construction and sequencing of clone libraries allowed several members of these communities to be identified, with Proteobacteria being the dominant one, followed by Cyanobacteria and Bacteroidetes. T-RFLP data revealed significantly different communities in holes on the (cold) valley glacier Austre Brøggerbreen relative to two adjacent (polythermal) valley glaciers, Midtre Lovénbreen and Vestre Brøggerbreen. These population compositions correlate with differences in organic matter content, temperature and the metabolic activity of microbial communities concerned. No within-glacier spatial patterns were observed in the communities identified over the 2-year period and with the 1 km-spaced sampling. We infer that surface hydrology is an important factor in the development of cryoconite bacterial communities.


Nature Reviews Microbiology | 2015

Microbial ecology of the cryosphere: sea ice and glacial habitats

Antje Boetius; Alexandre M. Anesio; Jody W. Deming; Jill A. Mikucki; Josephine Z. Rapp

The Earths cryosphere comprises those regions that are cold enough for water to turn into ice. Recent findings show that the icy realms of polar oceans, glaciers and ice sheets are inhabited by microorganisms of all three domains of life, and that temperatures below 0 °C are an integral force in the diversification of microbial life. Cold-adapted microorganisms maintain key ecological functions in icy habitats: where sunlight penetrates the ice, photoautotrophy is the basis for complex food webs, whereas in dark subglacial habitats, chemoautotrophy reigns. This Review summarizes current knowledge of the microbial ecology of frozen waters, including the diversity of niches, the composition of microbial communities at these sites and their biogeochemical activities.


The ISME Journal | 2012

Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet

Marian L Yallop; Alexandre M. Anesio; Rupert Gordon Perkins; J. M. Cook; Jon Telling; Dan T Fagan; James W MacFarlane; Marek Stibal; Gary L. A. Barker; Christopher M Bellas; Andy Hodson; Martyn Tranter; Jemma L. Wadham; Nicholas W. Roberts

Darkening of parts of the Greenland ice sheet surface during the summer months leads to reduced albedo and increased melting. Here we show that heavily pigmented, actively photosynthesising microalgae and cyanobacteria are present on the bare ice. We demonstrate the widespread abundance of green algae in the Zygnematophyceae on the ice sheet surface in Southwest Greenland. Photophysiological measurements (variable chlorophyll fluorescence) indicate that the ice algae likely use screening mechanisms to downregulate photosynthesis when exposed to high intensities of visible and ultraviolet radiation, rather than non-photochemical quenching or cell movement. Using imaging microspectrophotometry, we demonstrate that intact cells and filaments absorb light with characteristic spectral profiles across ultraviolet and visible wavelengths, whereas inorganic dust particles typical for these areas display little absorption. Our results indicate that the phototrophic community growing directly on the bare ice, through their photophysiology, most likely have an important role in changing albedo, and subsequently may impact melt rates on the ice sheet.


Nature | 2012

Potential methane reservoirs beneath Antarctica

Jemma L. Wadham; Sandra Arndt; Slawek Tulaczyk; Marek Stibal; Martyn Tranter; Jon Telling; Grzegorz P. Lis; Emily C. Lawson; Andy Ridgwell; Ashley Dubnick; Martin Sharp; Alexandre M. Anesio; Catriona Butler

Once thought to be devoid of life, the ice-covered parts of Antarctica are now known to be a reservoir of metabolically active microbial cells and organic carbon. The potential for methanogenic archaea to support the degradation of organic carbon to methane beneath the ice, however, has not yet been evaluated. Large sedimentary basins containing marine sequences up to 14 kilometres thick and an estimated 21,000 petagrams (1 Pg equals 1015 g) of organic carbon are buried beneath the Antarctic Ice Sheet. No data exist for rates of methanogenesis in sub-Antarctic marine sediments. Here we present experimental data from other subglacial environments that demonstrate the potential for overridden organic matter beneath glacial systems to produce methane. We also numerically simulate the accumulation of methane in Antarctic sedimentary basins using an established one-dimensional hydrate model and show that pressure/temperature conditions favour methane hydrate formation down to sediment depths of about 300 metres in West Antarctica and 700 metres in East Antarctica. Our results demonstrate the potential for methane hydrate accumulation in Antarctic sedimentary basins, where the total inventory depends on rates of organic carbon degradation and conditions at the ice-sheet bed. We calculate that the sub-Antarctic hydrate inventory could be of the same order of magnitude as that of recent estimates made for Arctic permafrost. Our findings suggest that the Antarctic Ice Sheet may be a neglected but important component of the global methane budget, with the potential to act as a positive feedback on climate warming during ice-sheet wastage.


Journal of Geophysical Research | 2007

A glacier respires: Quantifying the distribution and respiration CO2 flux of cryoconite across an entire Arctic supraglacial ecosystem

Andy Hodson; Alexandre M. Anesio; Felix Ng; Rory Watson; Joe Quirk; Tristram Irvine-Fynn; Adrian Dye; Chris D. Clark; Patrick McCloy; Jack Kohler; Birgit Sattler

Hodson, A., Anesio, A. M., Ng, F., Watson, R., Quirk, J., Irvine-fynn, T., Dye, A., Clark, C., McCloy, P., Kohler, J., Sattler, B. (2007). A glacier respires: Quantifying the distribution and respiration Co2 flux of cryoconite across an entire Arctic supraglacial ecosystem. Journal of Geophysical Research, 112 (G4).


FEMS Microbiology Ecology | 2014

Variations of algal communities cause darkening of a Greenland glacier

Stefanie Lutz; Alexandre M. Anesio; Susana E. Jorge Villar; Liane G. Benning

We have assessed the microbial ecology on the surface of Mittivakkat glacier in SE-Greenland during the exceptional high melting season in July 2012 when the so far most extreme melting rate for the Greenland Ice Sheet has been recorded. By employing a complementary and multi-disciplinary field sampling and analytical approach, we quantified the dramatic changes in the different microbial surface habitats (green snow, red snow, biofilms, grey ice, cryoconite holes). The observed clear change in dominant algal community and their rapidly changing cryo-organic adaptation inventory was linked to the high melting rate. The changes in carbon and nutrient fluxes between different microbial pools (from snow to ice, cryoconite holes and glacial forefronts) revealed that snow and ice algae dominate the net primary production at the onset of melting, and that they have the potential to support the cryoconite hole communities as carbon and nutrient sources. A large proportion of algal cells is retained on the glacial surface and temporal and spatial changes in pigmentation contribute to the darkening of the snow and ice surfaces. This implies that the fast, melt-induced algal growth has a high albedo reduction potential, and this may lead to a positive feedback speeding up melting processes.


FEMS Microbiology Ecology | 2014

Coupled cryoconite ecosystem structure–function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers

Arwyn Edwards; Luis A. J. Mur; Susan E. Girdwood; Alexandre M. Anesio; Marek Stibal; Sara Rassner; Katherina Hell; Justin A. Pachebat; Barbara Post; Jennifer S. Bussell; Simon J. S. Cameron; Gareth W. Griffith; Andy Hodson; Birgit Sattler

Cryoconite holes are known as foci of microbial diversity and activity on polar glacier surfaces, but are virtually unexplored microbial habitats in alpine regions. In addition, whether cryoconite community structure reflects ecosystem functionality is poorly understood. Terminal restriction fragment length polymorphism and Fourier transform infrared metabolite fingerprinting of cryoconite from glaciers in Austria, Greenland and Svalbard demonstrated cryoconite bacterial communities are closely correlated with cognate metabolite fingerprints. The influence of bacterial-associated fatty acids and polysaccharides was inferred, underlining the importance of bacterial community structure in the properties of cryoconite. Thus, combined application of T-RFLP and FT-IR metabolite fingerprinting promises high throughput, and hence, rapid assessment of community structure-function relationships. Pyrosequencing revealed Proteobacteria were particularly abundant, with Cyanobacteria likely acting as ecosystem engineers in both alpine and Arctic cryoconite communities. However, despite these generalities, significant differences in bacterial community structures, compositions and metabolomes are found between alpine and Arctic cryoconite habitats, reflecting the impact of local and regional conditions on the challenges of thriving in glacial ecosystems.


Journal of Geophysical Research | 2011

Nitrogen fixation on Arctic glaciers, Svalbard

Jon Telling; Alexandre M. Anesio; Martyn Tranter; Tristram Irvine-Fynn; Andy Hodson; Catriona Butler; Jemma L. Wadham

Telling, J., Anesio, A. M., Tranter, M., Irvine-Fynn, T., Hodson, A., Butler, C., Wadham, J. (2011). Nitrogen fixation on Arctic glaciers, Svalbard. Journal of Geophysical Research-Biogeosciences, 116, Article Number: G03039.

Collaboration


Dive into the Alexandre M. Anesio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andy Hodson

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marek Stibal

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge