Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandre Malta Rossi is active.

Publication


Featured researches published by Alexandre Malta Rossi.


Colloids and Surfaces B: Biointerfaces | 2011

Adsorption and bioactivity studies of albumin onto hydroxyapatite surface.

Elena Mavropoulos; A. Costa; Lilian T. Costa; Carlos A. Achete; Alexandre Mello; José Mauro Granjeiro; Alexandre Malta Rossi

Bovine serum albumin (BSA) may have an inhibitory or promoter effect on hydroxyapatite (HA) nucleation when apatite is precipitated in a medium containing the protein. In this study we evaluated the influence of BSA on the precipitation of calcium phosphate phases (CP) from simulated body fluid (SBF) when the protein was previously bounded to HA surface. The kinetics of BSA immobilization onto hydroxyapatite surface was performed in different buffers and protein concentrations in order to adjust experimental conditions in which BSA was tightly linked to HA surface for long periods in SBF solution. It was shown that for BSA concentration higher than 0.1mg/mL the adsorption to HA surface followed Langmuir-Freundlich mechanisms, which confirmed the existence of cooperative protein-protein interactions on HA surface. Fourier Transformed Infrared Attenuated Total Reflectance Microscopy (FTIRM-ATR) evidenced changes in BSA conformational state in favor of less-ordered structure. Analyses from high resolution grazing incident X-ray diffraction using synchrotron radiation (GIXRD), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) showed that a poorly crystalline calcium phosphate was precipitated on the surface of HA discs coated with BSA, after the immersion in SBF for 4 days. The new bioactive layer had morphological characteristics similar to the one formed on the HA surface without protein. It was identified as a carbonated apatite with preferential crystal growth along apatite 002 direction. The GIXRD results also revealed that BSA layer bound to the surface inhibited the HA dissolution leading to a reduction on the formation of new calcium phosphate phase.


Journal of Biomedical Materials Research Part A | 2011

Understanding the impact of divalent cation substitution on hydroxyapatite: an in vitro multiparametric study on biocompatibility.

Ingrid Russoni de Lima; Gutemberg Gomes Alves; Carlos Alberto Soriano; Ana Paula Campaneli; Thaís Helena Gasparoto; Erivan Schnaider Ramos; Lídia Ágata de Sena; Alexandre Malta Rossi; José Mauro Granjeiro

Hydroxyapatite (HA), a stable and biocompatible material for bone tissue therapy, may present a variable stoichiometry and accept a large number of cationic substitutions. Such substitutions may modify the chemical activity of HA surface, with possible impact on biocompatibility. In this work, we assessed the effects of calcium substitution with diverse divalent cations (Pb(2+), Sr(2+), Co(2+), Zn(2+), Fe(2+), Cu(2+), or Mg(2+)) on the biological behavior of HA. Physicochemical analyses revealed that apatite characteristics related to crystallinity and calcium dissolution/uptake rates are very sensitive to the nature of cationic substitution. Cytocompatibility was evaluated by mitochondrial activity, membrane integrity, cell density, proapoptotic potential, and adhesion tests. With the exception of Zn-HA, all the substituted HAs induced some level of apoptosis. The highest apoptosis levels were observed for Mg-HA and Co-HA. Cu-HA was the only material to impair simultaneously mitochondrial activity, membrane integrity, and cell density. The highest relative cell densities after exposure to the modified HAs were observed for Mg-HA and Zn-HA, while Co-HA significantly improved cell adhesion onto HA surface. These results show that changes on surface dissolution caused by cationic substitution, as well as the increase of metal species released to biological media, were the main responsible factors related to alterations on HA biocompatibility.


ACS Applied Materials & Interfaces | 2013

Growth of Crystalline Hydroxyapatite Thin Films at Room Temperature by Tuning the Energy of the RF-Magnetron Sputtering Plasma

Elvis O. López; Alexandre Mello; Henrique Sendão; Lilian T. Costa; André L. Rossi; Rogelio O. Ospina; Fabrício F. Borghi; José G. Silva Filho; Alexandre Malta Rossi

Right angle radio frequency magnetron sputtering technique (RAMS) was redesigned to favor the production of high-quality hydroxyapatite (HA) thin coatings for biomedical applications. Stoichiometric HA films with controlled crystallinity, thickness varying from 254 to 540 nm, crystallite mean size of 73 nm, and RMS roughness of 1.7 ± 0.9 nm, were obtained at room temperature by tuning the thermodynamic properties of the plasma sheath energy. The plasma energies were adjusted by using a suitable high magnetic field confinement of 143 mT (1430 G) and a substrate floating potential of 2 V at the substrate-to-magnetron distance of Z = 10 mm and by varying the sputtering geometry, substrate-to-magnetron distance from Z = 5 mm to Z = 18 mm, forwarded RF power and reactive gas pressure. Measurements that were taken with a Langmuir probe showed that the adjusted RAMS geometry generated a plasma with an adequate effective temperature of Teff ≈ 11.8 eV and electron density of 2.0 × 10(15) m(-3) to nucleate nanoclusters and to further crystallize the nanodomains of stoichiometric HA. The deposition mechanism in the RAMS geometry was described by the formation of building units of amorphous calcium phosphate clusters (ACP), the conversion into HA nanodomains and the crystallization of the grain domains with a preferential orientation along the HA [002] direction.


Bone | 2012

Ultrastructure of regenerated bone mineral surrounding hydroxyapatite–alginate composite and sintered hydroxyapatite

André L. Rossi; Isabela Cerqueira Barreto; William Q. Maciel; Fabiana Paim Rosa; Maria Helena M. Rocha-Leão; Jacques Werckmann; Alexandre Malta Rossi; Radovan Borojevic; Marcos Farina

We report the ultrastructure of regenerated bone surrounding two types of biomaterials: hydroxyapatite-alginate composite and sintered hydroxyapatite. Critical defects in the calvaria of Wistar rats were filled with micrometer-sized spherical biomaterials and analyzed after 90 and 120 days of implantation by high-resolution transmission electron microscopy and Fourier transform infrared attenuated total reflectance microscopy, respectively. Infrared spectroscopy showed that hydroxyapatite of both biomaterials became more disordered after implantation in the rat calvaria, indicating that the biological environment induced modifications in biomaterials structure. We observed that the regenerated bone surrounding both biomaterials had a lamellar structure with type I collagen fibers alternating in adjacent lamella with angles of approximately 90°. In each lamella, plate-like apatite crystals were aligned in the c-axis direction, although a rotation around the c-axis could be present. Bone plate-like crystal dimensions were similar in regenerated bone around biomaterials and pre-existing bone in the rat calvaria. No epitaxial growth was observed around any of the biomaterials. A distinct mineralized layer was observed between new bone and hydroxyapatite-alginate biomaterial. This region presented a particular ultrastructure with crystallites smaller than those of the bulk of the biomaterial, and was possibly formed during the synthesis of alginate-containing composite or in the biological environment after implantation. Round nanoparticles were observed in regions of newly formed bone. The findings of this work contribute to a better understanding of the role of hydroxyapatite based biomaterials in bone regeneration processes at the nanoscale.


BioMed Research International | 2013

Characterization of Antibiotic-Loaded Alginate-Osa Starch Microbeads Produced by Ionotropic Pregelation

Gizele Cardoso Fontes; Verônica Calado; Alexandre Malta Rossi; Maria Helena M. Rocha-Leão

The aim of this study was to characterize the penicillin-loaded microbeads composed of alginate and octenyl succinic anhydride (OSA) starch prepared by ionotropic pregelation with calcium chloride and to evaluate their in vitro drug delivery profile. The beads were characterized by size, scanning electron microscopy (SEM), zeta potential, swelling behavior, and degree of erosion. Also, the possible interaction between penicillin and biopolymers was investigated by differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), and Fourier transform infrared (FTIR) analysis. The SEM micrograph results indicated a homogeneous drug distribution in the matrix. Also, based on thermal analyses (TGA/DSC), interactions were detected between microbead components. Although FTIR spectra of penicillin-loaded microbeads did not reveal the formation of new chemical entities, they confirmed the chemical drug stability. XRD patterns showed that the incorporated crystalline structure of penicillin did not significantly alter the primarily amorphous polymeric network. In addition, the results confirmed a prolonged penicillin delivery system profile. These results imply that alginate and OSA starch beads can be used as a suitable controlled-release carrier for penicillin.


Journal of Biomedical Materials Research Part B | 2016

In vitro and in vivo evaluation of strontium-containing nanostructured carbonated hydroxyapatite/sodium alginate for sinus lift in rabbits

Helder Valiense; Mauricio Lima Barreto; Rodrigo Figueiredo de Brito Resende; Adriana Terezinha Neves Novellino Alves; Alexandre Malta Rossi; Elena Mavropoulos; José Mauro Granjeiro; Mônica Diuana Calasans-Maia

Various synthetic bone substitutes have been developed to reconstruct bone defects. One of the most prevalent ceramics in bone treatment is hydroxyapatite (HA) that is a useful material as bone substitute, however, with a low rate of biodegradation. Its structure allows isomorphic cationic and anionic substitutions to be easily introduced, which can alter the crystallinity, morphology, biocompatibility, and osteoconductivity. The objective of this study was to investigate the in vitro and in vivo biological responses to strontium-containing nanostructured carbonated HA/sodium alginate (SrCHA) spheres (425<ϕ <600 μm) that were used for sinus lifts in rabbits using nanostructured carbonated HA/sodium alginate (CHA) as a reference. Cytocompatibility was determined using a multiparametric assay after exposing murine preosteoblasts to the extracts of these materials. Twelve male and female rabbits underwent bilateral sinus lift procedures and were divided into two groups (CHA or SrCHA) and in two experimental periods (4 and 12 weeks), for microscopic and histomorphometric analyses. The in vitro test revealed the overall viability of the cells exposed to the CHA and SrCHA extracts; thus, these extracts were considered cytocompatible, which was confirmed by three different parameters in the in vitro tests. The histological analysis showed chronic inflammation with a prevalence of macrophages around the CHA spheres after 4 weeks, and this inflammation decreased after 12 weeks. Bone formation was observed in both groups, and smaller quantities of SrCHA spheres were observed after 12 weeks, indicating greater bioresorption of SrCHA than CHA. SrCHA spheres are biocompatible and osteoconductive and undergo bioresorption earlier than CHA spheres.


Colloids and Surfaces B: Biointerfaces | 2011

Adsorption of chlorhexidine on synthetic hydroxyapatite and in vitro biological activity

Carlos Alberto Soriano de Souza; Ana Paula Vieira Colombo; Renata Souto; Carina Maciel Silva-Boghossian; José Mauro Granjeiro; Gutemberg Gomes Alves; Alexandre Malta Rossi; Maria Helena M. Rocha-Leão

The kinetic of chlorhexidine digluconate (CHXDG) uptake from aqueous solution by hydroxyapatite (HA) was investigated by ultraviolet (UV) analysis performed in HA powder (UV-solid) after the CHX adsorption. Adsorption isotherm of chlorhexidine (CHX) uptake was modeled by a combination of Languimir and Langmuir-Freundlich mechanisms. Strong molecule-molecule interactions and positive cooperativity predominated in the surface when CHX concentration was above 8.6 μg(CHX)/mg(HA). UV-solid spectra (shape, intensity and band position) of CHX bound to HA revealed that long-range molecular structures, such as aggregates or micelles, started to be formed at low CHX concentrations (1.52 μg(CHX)/mg(HA)) and predominated at high concentrations. Grazing-incidence X-ray diffraction (GIXRD) analysis from synchrotron radiation discarded the formation of crystalline structures on HA surface or precipitation of CHX crystalline salts, as suggested in previous works. The effect of the HA/CHX association on HA in vitro bioactivity, cytotoxicity and CHX antimicrobial activity was evaluated. It was shown that CHX did not inhibit the precipitation of a poorly crystalline apatite at HA/CHX surface after soaking in simulating body fluid (SBF). Cell viability studies after exposure to extracts of HA and HA/CHX showed that both biomaterials did not present significant in vitro toxicity. Moreover, HA/CHX inhibited Enterococcus faecalis growth for up to 6 days, revealing that binding to HA did not affect antimicrobial activity of CHX and reduced bacterial adhesion. These results suggested that HA/CHX association could result in a potential adjuvant antimicrobial system for clinical use.


Key Engineering Materials | 2007

Effect of Hydroxyapatite and Zinc-Containing Hydroxyapatite on Osseous Repair of Critical Size Defect in the Rat Calvaria

Mônica Diuana Calasans-Maia; Gustavo Vicentis de Oliveira Fernandes; Alexandre Malta Rossi; Eliane Pedra Dias; G. D. S. Almeida; Fabio Franceschini Mitri; José Mauro Granjeiro

Hydroxyapatite (HA), widely used as bone graft, can be modified by the incorporation of bivalent cations (Mg2+ and Zn2+) and its gradual release could favor the bone repair. The purpose of this research was to evaluate the effect of the HA and zinc-containing hydroxyapatite (Zn-HA) in the bone repair in rat calvaria in comparison to autogenous bone. Critical size defect in the calvaria was filled with the graft material and the samples were harvested at the 30, 90 and 180 days. The light microcopy observations showed the biocompatibility of the graft materials. In the Zn-HA group the area of neoformed bone was larger than in the HA group, but smaller than in the autograft. A fibrous connective tissue was more evident around HA granules. It could be conclude that the presence of zinc ions in HA crystal accelerated the osteogenesis and increased the area of newly formed bone in relation to HA.


Materials Science and Engineering: C | 2014

Short-term in vivo evaluation of zinc-containing calcium phosphate using a normalized procedure

Mônica Diuana Calasans-Maia; José de Albuquerque Calasans-Maia; Silvia R. A. Santos; Elena Mavropoulos; Marcos Farina; I. Lima; R.T. Lopes; Alexandre Malta Rossi; José Mauro Granjeiro

The effect of zinc-substituted calcium phosphate (CaP) on bone osteogenesis was evaluated using an in vivo normalized ISO 10993-6 protocol. Zinc-containing hydroxyapatite (ZnHA) powder with 0.3% by wt zinc (experimental group) and stoichiometric hydroxyapatite (control group) were shaped into cylindrical implants (2×6 mm) and were sintered at 1000 °C. Thermal treatment transformed the ZnHA cylinder into a biphasic implant that was composed of Zn-substituted HA and Zn-substituted β-tricalcium phosphate (ZnHA/βZnTCP); the hydroxyapatite cylinder was a highly crystalline and poorly soluble HA implant. In vivo tests were performed in New Zealand White rabbits by implanting two cylinders of ZnHA/βZnTCP in the left tibia and two cylinders of HA in the right tibia for 7, 14 and 28 days. Incorporation of 0.3% by wt zinc into CaP increased the rate of Zn release to the biological medium. Microfluorescence analyses (μXRF-SR) using synchrotron radiation suggested that some of the Zn released from the biomaterial was incorporated into new bone near the implanted region. In contrast with previous studies, histomorphometric analysis did not show significant differences between the newly formed bone around ZnHA/βZnTCP and HA due to the dissolution profile of Zn-doped CaP. Despite the great potential of Zn-containing CaP matrices for future use in bone regeneration, additional in vivo studies must be conducted to explain the mobility of zinc at the CaP surface and its interactions with a biological medium.


Microscopy and Microanalysis | 2008

High-Resolution Transmission Electron Microscopy Study of Nanostructured Hydroxyapatite

Daniel Biggemann; Marcelo Henrique Prado da Silva; Alexandre Malta Rossi; Antonio J. Ramirez

Crystalline properties of synthetic nanostructured hydroxyapatite (n-HA) were studied using high-resolution transmission electron microscopy. The focal-series-restoration technique, obtaining exit-plane wavefunction and spherical aberration-corrected images, was successfully applied for the first time in this electron-beam-susceptible material. Multislice simulations and energy dispersive X-ray spectroscopy were also employed to determine unequivocally that n-HA particles of different size preserve stoichiometric HA-like crystal structure. n-HA particles with sizes of twice the HA lattice parameter were found. These results can be used to optimize n-HA sinterization parameters to improve bioactivity.

Collaboration


Dive into the Alexandre Malta Rossi's collaboration.

Top Co-Authors

Avatar

José Mauro Granjeiro

Federal Fluminense University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Mavropoulos

Federal Fluminense University

View shared research outputs
Top Co-Authors

Avatar

André L. Rossi

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Alexandre Mello

Instituto Militar de Engenharia

View shared research outputs
Top Co-Authors

Avatar

Gutemberg Gomes Alves

Federal Fluminense University

View shared research outputs
Top Co-Authors

Avatar

Marcos Farina

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Maria Helena M. Rocha-Leão

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

A. Costa

Instituto Militar de Engenharia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge