Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandre Millon is active.

Publication


Featured researches published by Alexandre Millon.


Science | 2013

Europe-Wide Dampening of Population Cycles in Keystone Herbivores

Thomas Cornulier; Nigel G. Yoccoz; Vincent Bretagnolle; Jon E. Brommer; Alain Butet; Frauke Ecke; David A. Elston; Erik Framstad; Heikki Henttonen; Birger Hörnfeldt; Otso Huitu; Christian Imholt; Rolf A. Ims; Jens Jacob; Bogumiła Jędrzejewska; Alexandre Millon; Steve J. Petty; Hannu Pietiäinen; Emil Tkadlec; Karol Zub; Xavier Lambin

Cycling in Unison Many small mammals, especially voles, display semi-regular cycles of population boom and bust. Given the fundamental importance of small mammals as basal consumers and prey, such cycles can have cascading effects in trophic food webs. Cornulier et al. (p. 63) collated raw data from vole populations across Europe collected over the past 18 years. Reduction in winter growth rate was common across a wide variety of habitats with very different local climates, suggesting the presence of a continental-scale climatic driver of vole populations. Synchronicity in vole population fluctuation across Europe suggests a common climatic driver. Suggestions of collapse in small herbivore cycles since the 1980s have raised concerns about the loss of essential ecosystem functions. Whether such phenomena are general and result from extrinsic environmental changes or from intrinsic process stochasticity is currently unknown. Using a large compilation of time series of vole abundances, we demonstrate consistent cycle amplitude dampening associated with a reduction in winter population growth, although regulatory processes responsible for cyclicity have not been lost. The underlying syndrome of change throughout Europe and grass-eating vole species suggests a common climatic driver. Increasing intervals of low-amplitude small herbivore population fluctuations are expected in the future, and these may have cascading impacts on trophic webs across ecosystems.


Journal of Animal Ecology | 2011

Natal conditions alter age-specific reproduction but not survival or senescence in a long-lived bird of prey

Alexandre Millon; Steve J. Petty; B. Little; Xavier Lambin

1. Natal conditions and senescence are two major factors shaping life-history traits of wild animals. However, such factors have rarely been investigated together, and it remains largely unknown whether they interact to affect age-specific performance. 2. We used 27 years of longitudinal data collected on tawny owls with estimates of prey density (field voles) from Kielder Forest (UK) to investigate how prey density at birth affects ageing patterns in reproduction and survival. 3. Natal conditions experienced by tawny owls, measured in terms of vole density, dramatically varied among cohorts and explained 87% of the deviance in first-year apparent survival (annual estimates ranging from 0·07 to 0·33). 4. We found evidence for senescence in survival for females as well as for males. Model-averaged estimates showed that adult survival probability declined linearly with age for females from age 1. In contrast, male survival probability, lower on average than for female, declined after a plateau at age 1-3. 5. We also found evidence for reproductive senescence (number of offspring). For females, reproductive performance increased until age 9 then declined. Males showed an earlier decline in reproductive performance with an onset of senescence at age 3. 6. Long-lasting effects of natal environmental conditions were sex specific. Female reproductive performance was substantially related to natal conditions (difference of 0·24 fledgling per breeding event between females born in the first or third quartile of vole density), whereas male performance was not. We found no evidence for tawny owls born in years with low prey density having accelerated rates of senescence. 7. Our results, combined with previous findings, suggest the way natal environmental conditions affect senescence varies not only across species but also within species according to gender and the demographic trait considered.


Journal of Animal Ecology | 2010

Pulsed resources affect the timing of first breeding and lifetime reproductive success of tawny owls

Alexandre Millon; Steve J. Petty; Xavier Lambin

1. According to life-history theory, environmental variability and costs of reproduction account for the prevalence of delayed reproduction in many taxa. Empirical estimates of the fitness consequences of different ages at first breeding in a variable environment are few however such that the contributions of environmental and individual variability remains poorly known. 2. Our objectives were to elucidate processes that underpin variation in delayed reproduction and to assess lifetime consequences of the age of first breeding in a site-faithful predator, the tawny owl Strix aluco L. subjected to fluctuating selection linked to cyclical variation in vole density (typically 3-year cycles with low, increasing and decreasing vole densities in successive years). 3. A multistate capture-recapture model revealed that owl cohorts had strikingly different juvenile survival prospects, with estimates ranging from 0.08 to 0.33 respectively for birds born in Decrease and Increase phases of the vole cycle. This resulted in a highly skewed population structure with >75% of local recruits being reared during Increase years. In contrast, adult survival remained constant throughout a vole cycle. The probability of commencing reproduction was lower at age 1 than at older ages, and especially so for females. From age 2 onwards, pre-breeders had high probabilities of entering the breeding population. 4. Variation in lifetime reproductive success was driven by the phase of the vole cycle in which female owls started their breeding career (26-47% of variance explained, whether based on the number of local recruits or fledglings), more than by age at first breeding or by conditions experienced at birth. Females who postponed reproduction to breed for the first time at age 3 during an Increase phase, produced more recruits, even when accounting for birds that may have died before reproduction. No such effects were detected for males. 5. Sex-specific costs of early reproduction may have accounted for females being more prone to delay reproduction. Contrary to expectations from a best-of-a-bad job strategy, early-hatched, hence potentially higher-quality females were more likely to breed at age 1, but then experienced rapidly declining food resources and so seemed caught in a life-history trap set by the multiannual vole cycle.


Journal of Animal Ecology | 2009

Predator–prey relationships in a changing environment: the case of the sparrowhawk and its avian prey community in a rural area

Alexandre Millon; Jan Tøttrup Nielsen; Vincent Bretagnolle; Anders Pape Møller

1. Changes in community composition are expected to entail cascading effects at different trophic levels within a food web. However, empirical evidence on the impact of changes in prey communities on the population dynamics of generalist predators, and on the extent of possible feedback processes, remains scarce. 2. We analysed the dynamics of a generalist predator, the European sparrowhawk Accipiter nisus L., in a rural area of Northern Denmark. Over a 20-year period, the diet of the predator has been thoroughly assessed (>30,000 identified prey items) and quantitative information about its avian prey community, based on standard breeding bird surveys, has revealed significant trends for several passerine species, although the overall prey biomass available remained stable. 3. The growth rate of the sparrowhawk breeding population was negatively related to the previous sparrowhawk density and to winter temperature, but was positively related to available prey biomass. Contrary to expectations for a generalist predator, sparrowhawks seemed to be predominantly sensitive to changes in the cumulative abundance of their two main prey species, the skylark Alauda arvensis L. and the blackbird Turdus merula L., but less so to changes in the wider prey community. 4. In demographic terms, the two-phase sparrowhawk dynamic recorded here (a recovery following an initial decrease) was mainly driven by recruitment of yearling females into the breeding population rather than by variation in the apparent survival of breeding females. 5. Our findings emphasize that changes in the composition of a prey community, affected by environmental changes, impacted population dynamics of a generalist predator. Finally, we found conditions that might enable apparent competition between blackbirds and song thrushes Turdus philomelos L. to occur. High blackbird abundance, maintaining sparrowhawks at a relatively high density may, in turn, push song thrushes into a predator pit.


Global Change Biology | 2014

Dampening prey cycle overrides the impact of climate change on predator population dynamics: a long‐term demographic study on tawny owls

Alexandre Millon; Steve J. Petty; B. Little; Olivier Gimenez; Thomas Cornulier; Xavier Lambin

Predicting the dynamics of animal populations with different life histories requires careful understanding of demographic responses to multifaceted aspects of global changes, such as climate and trophic interactions. Continent-scale dampening of vole population cycles, keystone herbivores in many ecosystems, has been recently documented across Europe. However, its impact on guilds of vole-eating predators remains unknown. To quantify this impact, we used a 27-year study of an avian predator (tawny owl) and its main prey (field vole) collected in Kielder Forest (UK) where vole dynamics shifted from a high- to a low-amplitude fluctuation regime in the mid-1990s. We measured the functional responses of four demographic rates to changes in prey dynamics and winter climate, characterized by wintertime North Atlantic Oscillation (wNAO). First-year and adult survival were positively affected by vole density in autumn but relatively insensitive to wNAO. The probability of breeding and number of fledglings were higher in years with high spring vole densities and negative wNAO (i.e. colder and drier winters). These functional responses were incorporated into a stochastic population model. The size of the predator population was projected under scenarios combining prey dynamics and winter climate to test whether climate buffers or alternatively magnifies the impact of changes in prey dynamics. We found the observed dampening vole cycles, characterized by low spring densities, drastically reduced the breeding probability of predators. Our results illustrate that (i) change in trophic interactions can override direct climate change effect; and (ii) the demographic resilience entailed by longevity and the occurrence of a floater stage may be insufficient to buffer hypothesized environmental changes. Ultimately, dampened prey cycles would drive our owl local population towards extinction, with winter climate regimes only altering persistence time. These results suggest that other vole-eating predators are likely to be threatened by dampening vole cycles throughout Europe.


PLOS ONE | 2013

Evolution of Predator Dispersal in Relation to Spatio-Temporal Prey Dynamics: How Not to Get Stuck in the Wrong Place!

Justin M. J. Travis; Stephen C. F. Palmer; Steven Coyne; Alexandre Millon; Xavier Lambin

The eco-evolutionary dynamics of dispersal are recognised as key in determining the responses of populations to environmental changes. Here, by developing a novel modelling approach, we show that predators are likely to have evolved to emigrate more often and become more selective over their destination patch when their prey species exhibit spatio-temporally complex dynamics. We additionally demonstrate that the cost of dispersal can vary substantially across space and time. Perhaps as a consequence of current environmental change, many key prey species are currently exhibiting major shifts in their spatio-temporal dynamics. By exploring similar shifts in silico, we predict that predator populations will be most vulnerable when prey dynamics shift from stable to complex. The more sophisticated dispersal rules, and greater variance therein, that evolve under complex dynamics will enable persistence across a broader range of prey dynamics than the rules which evolve under relatively stable prey conditions.


Naturwissenschaften | 2014

Is naïveté forever? Alien predator and aggressor recognition by two endemic island reptiles

A. Gérard; Hervé Jourdan; C. Cugnière; Alexandre Millon; Eric Vidal

The disproportionate impacts of invasive predators are often attributed to the naïveté (i.e., inefficient or non-existing anti-predator behavior) of island native species having evolved without such predators. Naïveté has long been regarded as a fixed characteristic, but a few recent studies indicate a capacity for behavioral adaptation in native species in contact with alien predators. Here, we tested whether two reptiles endemic to New Caledonia, a skink, Caledoniscincus austrocaledonicus, and a gecko, Bavayia septuiclavis, recognized and responded to the odor of six introduced species (two rodents, the feral cat, and three species of ants). We used an experimental design in which reptiles had a choice of retreat sites with or without the odor of predators or aggressors. Skinks avoided two or three of the predators, whereas geckos avoided at most one. These results suggest that diurnal skinks are more responsive than nocturnal geckos to the odor of introduced predators. Neither skinks nor geckos avoided the three species of ants. Thus, the odors of alien predators are shown to influence retreat site selection by two native island reptiles. Moreover, the study suggests that this loss of naïveté varies among native species, probably as a consequence of the intensity of the threat and of time since introduction. These findings argue for re-thinking the behavioral flexibility of ectothermic reptiles in terms of their responses to biological invasion.


PLOS ONE | 2016

Knocking on Heaven's Door: Are Novel Invaders Necessarily Facing Naive Native Species on Islands?

Agathe Gérard; Hervé Jourdan; Alexandre Millon; Eric Vidal

The impact of alien predator species on insular native biota has often been attributed to island prey naïveté (i.e. lack of, or inefficient, anti-predator behavior). Only rarely, however, has the concept of island prey naïveté been tested, and then only a posteriori (i.e. hundreds or thousands of years after alien species introduction). The presence of native or anciently introduced predators or competitors may be crucial for the recognition and development of adaptive behavior toward unknown predators or competitors of the same archetype (i.e. a set of species that occupy a similar ecological niche and show similar morphological and behavioral traits when interacting with other species). Here, we tested whether two squamates endemic to New Caledonia, a skink, Caledoniscincus austrocaledonicus, and a gecko, Bavayia septuiclavis, recognized and responded to the odor of two major invaders introduced into the Pacific islands, but not yet into New Caledonia. We chose one predator, the small Indian mongoose Herpestes javanicus and one competitor, the cane toad Rhinella marina, which belong respectively to the same archetype as the following two species already introduced into New Caledonia in the nineteenth century: the feral cat Felis catus and the golden bell frog Litoria aurea. Our experiment reveals that geckos are naïve with respect to the odors of both an unknown predator and an unknown competitor, as well as to the odors of a predator and a competitor they have lived with for centuries. In contrast, skinks seem to have lost some naïveté regarding the odor of a predator they have lived with for centuries and seem “predisposed” to avoid the odor of an unknown potential competitor. These results indicate that insular species living in contact with invasive alien species for centuries may be, although not systematically, predisposed toward developing adaptive behavior with respect to species belonging to the same archetype and introduced into their native range.


Current Zoology | 2017

Invasive rats strengthen predation pressure on bird eggs in a South Pacific island rainforest

Quiterie Duron; E. Bourguet; H. De Meringo; Alexandre Millon; Eric Vidal

Abstract Invasive rats (Rattus spp.) are known to have pervasive impacts on island birds, particularly on their nesting success. To conserve or restore bird populations, numerous invasive rat control or eradication projects are undertaken on islands worldwide. However, such projects represent a huge investment and the decision-making process requires proper assessment of rat impacts. Here, we assessed the influence of two sympatric invasive rats (Rattus rattus and R. exulans) on native bird eggs in a New Caledonian rainforest, using artificial bird-nest monitoring. A total of 178 artificial nests containing two eggs of three different sizes were placed either on the ground or 1.5 m high and monitored at the start of the birds’ breeding season. Overall, 12.4% of the nests were depredated during the first 7 days. At site 1, where nests were monitored during 16 days, 41.8% of the nests were depredated. The main predator was the native crow Corvus moneduloides, responsible for 62.9% of the overall predation events. Rats were responsible for only 22.9% of the events, and ate only small and medium eggs at both heights. Our experiment suggests that in New Caledonia, predation pressure by rats strengthens overall bird-nest predation, adding to that by native predators. Experimental rat control operations may allow reduced predation pressure on nests as well as the recording of biodiversity responses after rat population reduction.


PLOS ONE | 2016

Species Distribution 2.0: An Accurate Time- and Cost-Effective Method of Prospection Using Street View Imagery

Laurent Hardion; Agathe Leriche; Eugénie Schwoertzig; Alexandre Millon

Species occurrence data provide crucial information for biodiversity studies in the current context of global environmental changes. Such studies often rely on a limited number of occurrence data collected in the field and on pseudo-absences arbitrarily chosen within the study area, which reduces the value of these studies. To overcome this issue, we propose an alternative method of prospection using geo-located street view imagery (SVI). Following a standardised protocol of virtual prospection using both vertical (aerial photographs) and horizontal (SVI) perceptions, we have surveyed 1097 randomly selected cells across Spain (0.1x0.1 degree, i.e. 20% of Spain) for the presence of Arundo donax L. (Poaceae). In total we have detected A. donax in 345 cells, thus substantially expanding beyond the now two-centuries-old field-derived record, which described A. donax only 216 cells. Among the field occurrence cells, 81.1% were confirmed by SVI prospection to be consistent with species presence. In addition, we recorded, by SVI prospection, 752 absences, i.e. cells where A. donax was considered absent. We have also compared the outcomes of climatic niche modeling based on SVI data against those based on field data. Using generalized linear models fitted with bioclimatic predictors, we have found SVI data to provide far more compelling results in terms of niche modeling than does field data as classically used in SDM. This original, cost- and time-effective method provides the means to accurately locate highly visible taxa, reinforce absence data, and predict species distribution without long and expensive in situ prospection. At this time, the majority of available SVI data is restricted to human-disturbed environments that have road networks. However, SVI is becoming increasingly available in natural areas, which means the technique has considerable potential to become an important factor in future biodiversity studies.

Collaboration


Dive into the Alexandre Millon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicolas Lieury

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Eric Vidal

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hervé Jourdan

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge