Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandre N. Ermilov is active.

Publication


Featured researches published by Alexandre N. Ermilov.


Nature Medicine | 2009

Primary cilia can both mediate and suppress Hedgehog pathway–dependent tumorigenesis

Sunny Y. Wong; Allen Seol; Po Lin So; Alexandre N. Ermilov; Christopher K. Bichakjian; Ervin H. Epstein; Andrzej A. Dlugosz; Jeremy F. Reiter

Primary cilia are present on most mammalian cells and are implicated in transducing Hedgehog (Hh) signals during development; however, the prevalence of cilia on human tumors remains unclear, and the role of cilia in cancer has not been examined. Here we show that human basal cell carcinomas (BCCs) are frequently ciliated, and we test the role of cilia in BCC by conditionally deleting Kif3a (encoding kinesin family member 3A) or Ift88 (encoding intraflagellar transport protein 88), genes required for ciliogenesis, in two Hh pathway–dependent mouse tumor models. Ciliary ablation strongly inhibited BCC-like tumors induced by an activated form of Smoothened. In contrast, removal of cilia accelerated tumors induced by activated Gli2, a transcriptional effector of Hh signaling. These seemingly paradoxical effects are consistent with a dual role for cilia in mediating both the activation and the repression of the Hh signaling pathway. Our findings demonstrate that cilia function as unique signaling organelles that can either mediate or suppress tumorigenesis depending on the nature of the oncogenic initiating event.


Journal of Clinical Investigation | 2011

Basal cell carcinomas in mice arise from hair follicle stem cells and multiple epithelial progenitor populations

Marina Grachtchouk; Joanna Pero; Steven H. Yang; Alexandre N. Ermilov; L. Evan Michael; Aiqin Wang; Dawn M. Wilbert; Rajiv M. Patel; Jennifer Ferris; James Diener; Mary Allen; Seokchun Lim; Li Jyun Syu; Monique Verhaegen; Andrzej A. Dlugosz

Uncontrolled Hedgehog (Hh) signaling leads to the development of basal cell carcinoma (BCC), the most common human cancer, but the cell of origin for BCC is unclear. While Hh pathway dysregulation is common to essentially all BCCs, there exist multiple histological subtypes, including superficial and nodular variants, raising the possibility that morphologically distinct BCCs may arise from different cellular compartments in skin. Here we have shown that induction of a major mediator of Hh signaling, GLI2 activator (GLI2ΔN), selectively in stem cells of resting hair follicles in mice, induced nodular BCC development from a small subset of cells in the lower bulge and secondary hair germ compartments. Tumorigenesis was markedly accelerated when GLI2ΔN was induced in growing hair follicles. In contrast, induction of GLI2ΔN in epidermis led to the formation of superficial BCCs. Expression of GLI2ΔN at reduced levels in mice yielded lesions resembling basaloid follicular hamartomas, which have previously been linked to low-level Hh signaling in both mice and humans. Our data show that the cell of origin, tissue context (quiescent versus growing hair follicles), and level of oncogenic signaling can determine the phenotype of Hh/Gli-driven skin tumors, with high-level signaling required for development of superficial BCC-like tumors from interfollicular epidermis and nodular BCC-like tumors from hair follicle stem cells.


Embo Molecular Medicine | 2012

Hedgehog‐EGFR cooperation response genes determine the oncogenic phenotype of basal cell carcinoma and tumour‐initiating pancreatic cancer cells

Markus Eberl; Stefan Klingler; Doris Mangelberger; Andrea Loipetzberger; Helene Damhofer; Kerstin Zoidl; Harald Schnidar; Hendrik Hache; Hans-Christian Bauer; Flavio Solca; Cornelia Hauser-Kronberger; Alexandre N. Ermilov; Monique Verhaegen; Christopher K. Bichakjian; Andrzej A. Dlugosz; Wilfried Nietfeld; Maria Sibilia; Hans Lehrach; Christoph Wierling; Fritz Aberger

Inhibition of Hedgehog (HH)/GLI signalling in cancer is a promising therapeutic approach. Interactions between HH/GLI and other oncogenic pathways affect the strength and tumourigenicity of HH/GLI. Cooperation of HH/GLI with epidermal growth factor receptor (EGFR) signalling promotes transformation and cancer cell proliferation in vitro. However, the in vivo relevance of HH‐EGFR signal integration and the critical downstream mediators are largely undefined. In this report we show that genetic and pharmacologic inhibition of EGFR signalling reduces tumour growth in mouse models of HH/GLI driven basal cell carcinoma (BCC). We describe HH‐EGFR cooperation response genes including SOX2, SOX9, JUN, CXCR4 and FGF19 that are synergistically activated by HH‐EGFR signal integration and required for in vivo growth of BCC cells and tumour‐initiating pancreatic cancer cells. The data validate EGFR signalling as drug target in HH/GLI driven cancers and shed light on the molecular processes controlled by HH‐EGFR signal cooperation, providing new therapeutic strategies based on combined targeting of HH‐EGFR signalling and selected downstream target genes.


Journal of Investigative Dermatology | 2015

Merkel Cell Polyomavirus Small T Antigen Is Oncogenic in Transgenic Mice

Monique Verhaegen; Doris Mangelberger; Paul W. Harms; Tracy D. Vozheiko; Jack W. Weick; Dawn M. Wilbert; Thomas L. Saunders; Alexandre N. Ermilov; Christopher K. Bichakjian; Timothy M. Johnson; Michael J. Imperiale; Andrzej A. Dlugosz

Merkel cell carcinoma (MCC) is a rare and deadly neuroendocrine skin tumor frequently associated with clonal integration of a polyomavirus, MCPyV, and MCC tumor cells express putative polyomavirus oncoproteins small T antigen (sTAg) and truncated large T antigen (tLTAg). Here, we show robust transforming activity of sTAg in vivo in a panel of transgenic mouse models. Epithelia of pre-term sTAg-expressing embryos exhibited hyperplasia, impaired differentiation, increased proliferation and apoptosis, and activation of a DNA damage response. Epithelial transformation did not require sTAg interaction with the PP2A protein complex, a tumor suppressor in some other polyomavirus transformation models, but was strictly dependent on a recently-described sTAg domain that binds Fbxw7, the substrate-binding component of the SCF ubiquitin ligase complex. Postnatal induction of sTAg using a Cre-inducible transgene also led to epithelial transformation with development of lesions resembling squamous cell carcinoma in situ and elevated expression of Fbxw7 target proteins. Our data establish that expression of MCPyV sTAg alone is sufficient for rapid neoplastic transformation in vivo, implicating sTAg as an oncogenic driver in MCC and perhaps other human malignancies. Moreover, the loss of transforming activity following mutation of the sTAg Fbxw7 binding domain identifies this domain as crucial for in vivo transformation.


Developmental Biology | 2013

Multiple Shh signaling centers participate in fungiform papilla and taste bud formation and maintenance

Hong Xiang Liu; Alexandre N. Ermilov; Marina Grachtchouk; Libo Li; Deborah L. Gumucio; Andrzej A. Dlugosz; Charalotte M. Mistretta

The adult fungiform taste papilla is a complex of specialized cell types residing in the stratified squamous tongue epithelium. This unique sensory organ includes taste buds, papilla epithelium and lateral walls that extend into underlying connective tissue to surround a core of lamina propria cells. Fungiform papillae must contain long-lived, sustaining or stem cells and short-lived, maintaining or transit amplifying cells that support the papilla and specialized taste buds. Shh signaling has established roles in supporting fungiform induction, development and patterning. However, for a full understanding of how Shh transduced signals act in tongue, papilla and taste bud formation and maintenance, it is necessary to know where and when the Shh ligand and pathway components are positioned. We used immunostaining, in situ hybridization and mouse reporter strains for Shh, Ptch1, Gli1 and Gli2-expression and proliferation markers to identify cells that participate in hedgehog signaling. Whereas there is a progressive restriction in location of Shh ligand-expressing cells, from placode and apical papilla cells to taste bud cells only, a surrounding population of Ptch1 and Gli1 responding cells is maintained in signaling centers throughout papilla and taste bud development and differentiation. The Shh signaling targets are in regions of active cell proliferation. Using genetic-inducible lineage tracing for Gli1-expression, we found that Shh-responding cells contribute not only to maintenance of filiform and fungiform papillae, but also to taste buds. A requirement for normal Shh signaling in fungiform papilla, taste bud and filiform papilla maintenance was shown by Gli2 constitutive activation. We identified proliferation niches where Shh signaling is active and suggest that epithelial and mesenchymal compartments harbor potential stem and/or progenitor cell zones. In all, we report a set of hedgehog signaling centers that regulate development and maintenance of taste organs, the fungiform papilla and taste bud, and surrounding lingual cells. Shh signaling has roles in forming and maintaining fungiform papillae and taste buds, most likely via stage-specific autocrine and/or paracrine mechanisms, and by engaging epithelial/mesenchymal interactions.


Journal of Neurophysiology | 2015

Hedgehog pathway blockade with the cancer drug LDE225 disrupts taste organs and taste sensation

Archana Kumari; Alexandre N. Ermilov; Benjamin L. Allen; Robert M. Bradley; Andrzej A. Dlugosz; Charlotte M. Mistretta

Taste sensation on the anterior tongue requires chorda tympani nerve function and connections with continuously renewing taste receptor cells. However, it is unclear which signaling pathways regulate the receptor cells to maintain chorda tympani sensation. Hedgehog (HH) signaling controls cell proliferation and differentiation in numerous tissues and is active in taste papillae and taste buds. In contrast, uncontrolled HH signaling drives tumorigenesis, including the common skin cancer, basal cell carcinoma. Systemic HH pathway inhibitors (HPIs) lead to basal cell carcinoma regression, but these drugs cause severe taste disturbances. We tested the hypothesis that taste disruption by HPIs reflects a direct requirement for HH signaling in maintaining taste organs and gustatory sensation. In mice treated with the HPI LDE225 up to 28 days, HH-responding cells were lost in fungiform papilla epithelium, and papillae acquired a conical apex. Taste buds were either absent or severely reduced in size in more than 90% of aberrant papillae. Taste bud remnants expressed the taste cell marker keratin 8, and papillae retained expression of nerve markers, neurofilament and P2X3. Chorda tympani nerve responses to taste stimuli were markedly reduced or absent in LDE225-treated mice. Responses to touch were retained, however, whereas cold responses were retained after 16 days of treatment but lost after 28 days. These data identify a critical, modality-specific requirement for HH signaling in maintaining taste papillae, taste buds and neurophysiological taste function, supporting the proposition that taste disturbances in HPI-treated patients are an on-target response to HH pathway blockade in taste organs.


PLOS Genetics | 2016

Maintenance of Taste Organs Is Strictly Dependent on Epithelial Hedgehog/GLI Signaling.

Alexandre N. Ermilov; Archana Kumari; Libo Li; Ariell M. Joiner; Marina Grachtchouk; Benjamin L. Allen; Andrzej A. Dlugosz; Charlotte M. Mistretta

For homeostasis, lingual taste papilla organs require regulation of epithelial cell survival and renewal, with sustained innervation and stromal interactions. To investigate a role for Hedgehog/GLI signaling in adult taste organs we used a panel of conditional mouse models to manipulate GLI activity within epithelial cells of the fungiform and circumvallate papillae. Hedgehog signaling suppression rapidly led to taste bud loss, papilla disruption, and decreased proliferation in domains of papilla epithelium that contribute to taste cells. Hedgehog responding cells were eliminated from the epithelium but retained in the papilla stromal core. Despite papilla disruption and loss of taste buds that are a major source of Hedgehog ligand, innervation to taste papillae was maintained, and not misdirected, even after prolonged GLI blockade. Further, vimentin-positive fibroblasts remained in the papilla core. However, retained innervation and stromal cells were not sufficient to maintain taste bud cells in the context of compromised epithelial Hedgehog signaling. Importantly taste organ disruption after GLI blockade was reversible in papillae that retained some taste bud cell remnants where reactivation of Hedgehog signaling led to regeneration of papilla epithelium and taste buds. Therefore, taste bud progenitors were either retained during epithelial GLI blockade or readily repopulated during recovery, and were poised to regenerate taste buds once Hedgehog signaling was restored, with innervation and papilla connective tissue elements in place. Our data argue that Hedgehog signaling is essential for adult tongue tissue maintenance and that taste papilla epithelial cells represent the key targets for physiologic Hedgehog-dependent regulation of taste organ homeostasis. Because disruption of GLI transcriptional activity in taste papilla epithelium is sufficient to drive taste organ loss, similar to pharmacologic Hedgehog pathway inhibition, the findings suggest that taste alterations in cancer patients using systemic Hedgehog pathway inhibitors result principally from interruption of signaling activity in taste papillae.


Oncotarget | 2016

Invasive mouse gastric adenocarcinomas arising from Lgr5+ stem cells are dependent on crosstalk between the Hedgehog/GLI2 and mTOR pathways

Li Jyun Syu; Xinyi Zhao; Yaqing Zhang; Marina Grachtchouk; Elise Demitrack; Alexandre N. Ermilov; Dawn M. Wilbert; Xinlei Zheng; Ashley Kaatz; Joel K. Greenson; Deborah L. Gumucio; Juanita L. Merchant; Marina Pasca di Magliano; Linda C. Samuelson; Andrzej A. Dlugosz

Gastric adenocarcinoma is the third most common cause of cancer-related death worldwide. Here we report a novel, highly-penetrant mouse model of invasive gastric cancer arising from deregulated Hedgehog/Gli2 signaling targeted to Lgr5-expressing stem cells in adult stomach. Tumor development progressed rapidly: three weeks after inducing the Hh pathway oncogene GLI2A, 65% of mice harbored in situ gastric cancer, and an additional 23% of mice had locally invasive tumors. Advanced mouse gastric tumors had multiple features in common with human gastric adenocarcinomas, including characteristic histological changes, expression of RNA and protein markers, and the presence of major inflammatory and stromal cell populations. A subset of tumor cells underwent epithelial-mesenchymal transition, likely mediated by focal activation of canonical Wnt signaling and Snail1 induction. Strikingly, mTOR pathway activation, based on pS6 expression, was robustly activated in mouse gastric adenocarcinomas from the earliest stages of tumor development, and treatment with rapamycin impaired tumor growth. GLI2A-expressing epithelial cells were detected transiently in intestine, which also contains Lgr5+ stem cells, but they did not give rise to epithelial tumors in this organ. These findings establish that deregulated activation of Hedgehog/Gli2 signaling in Lgr5-expressing stem cells is sufficient to drive gastric adenocarcinoma development in mice, identify a critical requirement for mTOR signaling in the pathogenesis of these tumors, and underscore the importance of tissue context in defining stem cell responsiveness to oncogenic stimuli.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Recovery of taste organs and sensory function after severe loss from Hedgehog/Smoothened inhibition with cancer drug sonidegib

Archana Kumari; Alexandre N. Ermilov; Marina Grachtchouk; Andrzej A. Dlugosz; Benjamin L. Allen; Robert M. Bradley; Charlotte M. Mistretta

Significance Hedgehog pathway-inhibitor drugs effectively treat basal cell carcinoma, a common skin cancer. However, many patients taking such drugs report severe taste disturbances that impair their quality of life. To understand the biology behind these adverse effects, we studied the consequences of Hedgehog pathway inhibition on taste organs and neural sensation in mice. Taste bud progenitor-cell proliferation and differentiation were altered, resulting in taste bud loss. Nerve responses to lingual taste stimuli were also eliminated, while responses to touch and cold stimuli remained. After stopping Hedgehog pathway inhibition, taste buds and sensory responses recovered. This study advances our understanding of Hedgehog signaling in taste homeostasis and the reported taste recovery after clinical treatments with Hedgehog pathway-inhibiting drugs. Striking taste disturbances are reported in cancer patients treated with Hedgehog (HH)-pathway inhibitor drugs, including sonidegib (LDE225), which block the HH pathway effector Smoothened (SMO). We tested the potential for molecular, cellular, and functional recovery in mice from the severe disruption of taste-organ biology and taste sensation that follows HH/SMO signaling inhibition. Sonidegib treatment led to rapid loss of taste buds (TB) in both fungiform and circumvallate papillae, including disruption of TB progenitor-cell proliferation and differentiation. Effects were selective, sparing nontaste papillae. To confirm that taste-organ effects of sonidegib treatment result from HH/SMO signaling inhibition, we studied mice with conditional global or epithelium-specific Smo deletions and observed similar effects. During sonidegib treatment, chorda tympani nerve responses to lingual chemical stimulation were maintained at 10 d but were eliminated after 16 d, associated with nearly complete TB loss. Notably, responses to tactile or cold stimulus modalities were retained. Further, innervation, which was maintained in the papilla core throughout treatment, was not sufficient to sustain TB during HH/SMO inhibition. Importantly, treatment cessation led to rapid and complete restoration of taste responses within 14 d associated with morphologic recovery in about 55% of TB. However, although taste nerve responses were sustained, TB were not restored in all fungiform papillae even with prolonged recovery for several months. This study establishes a physiologic, selective requirement for HH/SMO signaling in taste homeostasis that includes potential for sensory restoration and can explain the temporal recovery after taste dysgeusia in patients treated with HH/SMO inhibitors.


Genes & Development | 2006

Hedgehog/Ras interactions regulate early stages of pancreatic cancer

Marina Pasca di Magliano; Shigeki Sekine; Alexandre N. Ermilov; Jenny Ferris; Andrzej A. Dlugosz; Matthias Hebrok

Collaboration


Dive into the Alexandre N. Ermilov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aiqin Wang

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge