Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandre Orthwein is active.

Publication


Featured researches published by Alexandre Orthwein.


Molecular Cell | 2013

A Cell Cycle-Dependent Regulatory Circuit Composed of 53BP1-RIF1 and BRCA1-CtIP Controls DNA Repair Pathway Choice

Cristina Escribano-Diaz; Alexandre Orthwein; Amélie Fradet-Turcotte; Mengtan Xing; Jordan T.F. Young; Ján Tkáč; Michael A. Cook; Adam P. Rosebrock; Meagan Munro; Marella D. Canny; Dongyi Xu; Daniel Durocher

DNA double-strand break (DSB) repair pathway choice is governed by the opposing activities of 53BP1 and BRCA1. 53BP1 stimulates nonhomologous end joining (NHEJ), whereas BRCA1 promotes end resection and homologous recombination (HR). Here we show that 53BP1 is an inhibitor of BRCA1 accumulation at DSB sites, specifically in the G1 phase of the cell cycle. ATM-dependent phosphorylation of 53BP1 physically recruits RIF1 to DSB sites, and we identify RIF1 as the critical effector of 53BP1 during DSB repair. Remarkably, RIF1 accumulation at DSB sites is strongly antagonized by BRCA1 and its interacting partner CtIP. Lastly, we show that depletion of RIF1 is able to restore end resection and RAD51 loading in BRCA1-depleted cells. This work therefore identifies a cell cycle-regulated circuit, underpinned by RIF1 and BRCA1, that governs DSB repair pathway choice to ensure that NHEJ dominates in G1 and HR is favored from S phase onward.


Nature | 2013

53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark

Amélie Fradet-Turcotte; Marella D. Canny; Cristina Escribano-Diaz; Alexandre Orthwein; Charles C.Y. Leung; Hao Huang; Marie-Claude Landry; Julianne L. Kitevski-LeBlanc; Sylvie M. Noordermeer; Frank Sicheri; Daniel Durocher

53BP1 (also called TP53BP1) is a chromatin-associated factor that promotes immunoglobulin class switching and DNA double-strand-break (DSB) repair by non-homologous end joining. To accomplish its function in DNA repair, 53BP1 accumulates at DSB sites downstream of the RNF168 ubiquitin ligase. How ubiquitin recruits 53BP1 to break sites remains unknown as its relocalization involves recognition of histone H4 Lys 20 (H4K20) methylation by its Tudor domain. Here we elucidate how vertebrate 53BP1 is recruited to the chromatin that flanks DSB sites. We show that 53BP1 recognizes mononucleosomes containing dimethylated H4K20 (H4K20me2) and H2A ubiquitinated on Lys 15 (H2AK15ub), the latter being a product of RNF168 action on chromatin. 53BP1 binds to nucleosomes minimally as a dimer using its previously characterized methyl-lysine-binding Tudor domain and a carboxy-terminal extension, termed the ubiquitination-dependent recruitment (UDR) motif, which interacts with the epitope formed by H2AK15ub and its surrounding residues on the H2A tail. 53BP1 is therefore a bivalent histone modification reader that recognizes a histone ‘code’ produced by DSB signalling.


Nature | 2015

A mechanism for the suppression of homologous recombination in G1 cells

Alexandre Orthwein; Sylvie M. Noordermeer; Marcus D Wilson; Sébastien Landry; Radoslav I. Enchev; Alana Sherker; Meagan Munro; Jordan Pinder; Jayme Salsman; Graham Dellaire; Bing Xia; Matthias Peter; Daniel Durocher

DNA repair by homologous recombination is highly suppressed in G1 cells to ensure that mitotic recombination occurs solely between sister chromatids. Although many homologous recombination factors are cell-cycle regulated, the identity of the events that are both necessary and sufficient to suppress recombination in G1 cells is unknown. Here we report that the cell cycle controls the interaction of BRCA1 with PALB2–BRCA2 to constrain BRCA2 function to the S/G2 phases in human cells. We found that the BRCA1-interaction site on PALB2 is targeted by an E3 ubiquitin ligase composed of KEAP1, a PALB2-interacting protein, in complex with cullin-3 (CUL3)–RBX1 (ref. 6). PALB2 ubiquitylation suppresses its interaction with BRCA1 and is counteracted by the deubiquitylase USP11, which is itself under cell cycle control. Restoration of the BRCA1–PALB2 interaction combined with the activation of DNA-end resection is sufficient to induce homologous recombination in G1, as measured by RAD51 recruitment, unscheduled DNA synthesis and a CRISPR–Cas9-based gene-targeting assay. We conclude that the mechanism prohibiting homologous recombination in G1 minimally consists of the suppression of DNA-end resection coupled with a multi-step block of the recruitment of BRCA2 to DNA damage sites that involves the inhibition of BRCA1–PALB2–BRCA2 complex assembly. We speculate that the ability to induce homologous recombination in G1 cells with defined factors could spur the development of gene-targeting applications in non-dividing cells.


Nature | 2015

MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end-resection

Vera Boersma; Nathalie Moatti; Sandra Segura-Bayona; Marieke H. Peuscher; Jaco van der Torre; Brigitte A. Wevers; Alexandre Orthwein; Daniel Durocher; Jacqueline J.L. Jacobs

Appropriate repair of DNA lesions and the inhibition of DNA repair activities at telomeres are crucial to prevent genomic instability. By fuelling the generation of genetic alterations and by compromising cell viability, genomic instability is a driving force in cancer and ageing. Here we identify MAD2L2 (also known as MAD2B or REV7) through functional genetic screening as a novel factor controlling DNA repair activities at mammalian telomeres. We show that MAD2L2 accumulates at uncapped telomeres and promotes non-homologous end-joining (NHEJ)-mediated fusion of deprotected chromosome ends and genomic instability. MAD2L2 depletion causes elongated 3′ telomeric overhangs, indicating that MAD2L2 inhibits 5′ end resection. End resection blocks NHEJ while committing to homology-directed repair, and is under the control of 53BP1, RIF1 and PTIP. Consistent with MAD2L2 promoting NHEJ-mediated telomere fusion by inhibiting 5′ end resection, knockdown of the nucleases CTIP or EXO1 partially restores telomere-driven genomic instability in MAD2L2-depleted cells. Control of DNA repair by MAD2L2 is not limited to telomeres. MAD2L2 also accumulates and inhibits end resection at irradiation-induced DNA double-strand breaks and promotes end-joining of DNA double-strand breaks in several settings, including during immunoglobulin class switch recombination. These activities of MAD2L2 depend on ATM kinase activity, RNF8, RNF168, 53BP1 and RIF1, but not on PTIP, REV1 and REV3, the latter two acting with MAD2L2 in translesion synthesis. Together, our data establish MAD2L2 as a crucial contributor to the control of DNA repair activity by 53BP1 that promotes NHEJ by inhibiting 5′ end resection downstream of RIF1.


Nature Genetics | 2017

A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer

Paz Polak; Jaegil Kim; Lior Z. Braunstein; Rosa Karlic; Nicholas J Haradhavala; Grace Tiao; Daniel Rosebrock; Dimitri Livitz; Kirsten Kübler; Kent W. Mouw; Atanas Kamburov; Yosef E. Maruvka; Ignaty Leshchiner; Eric S. Lander; Todd R. Golub; Aviad Zick; Alexandre Orthwein; Michael S. Lawrence; R.N. Batra; Carlos Caldas; Daniel A. Haber; Peter W. Laird; Hui Shen; Leif W. Ellisen; Alan D. D'Andrea; Stephen J. Chanock; William D. Foulkes; Gad Getz

Biallelic inactivation of BRCA1 or BRCA2 is associated with a pattern of genome-wide mutations known as signature 3. By analyzing ∼1,000 breast cancer samples, we confirmed this association and established that germline nonsense and frameshift variants in PALB2, but not in ATM or CHEK2, can also give rise to the same signature. We were able to accurately classify missense BRCA1 or BRCA2 variants known to impair homologous recombination (HR) on the basis of this signature. Finally, we show that epigenetic silencing of RAD51C and BRCA1 by promoter methylation is strongly associated with signature 3 and, in our data set, was highly enriched in basal-like breast cancers in young individuals of African descent.


Endocrine-related Cancer | 2016

BRCA2 functions: from DNA repair to replication fork stabilization.

Amélie Fradet-Turcotte; Justine Sitz; Damien Grapton; Alexandre Orthwein

Maintaining genomic integrity is essential to preserve normal cellular physiology and to prevent the emergence of several human pathologies including cancer. The breast cancer susceptibility gene 2 (BRCA2, also known as the Fanconi anemia (FA) complementation group D1 (FANCD1)) is a potent tumor suppressor that has been extensively studied in DNA double-stranded break (DSB) repair by homologous recombination (HR). However, BRCA2 participates in numerous other processes central to maintaining genome stability, including DNA replication, telomere homeostasis and cell cycle progression. Consequently, inherited mutations in BRCA2 are associated with an increased risk of breast, ovarian and pancreatic cancers. Furthermore, bi-allelic mutations in BRCA2 are linked to FA, a rare chromosome instability syndrome characterized by aplastic anemia in children as well as susceptibility to leukemia and cancer. Here, we discuss the recent developments underlying the functions of BRCA2 in the maintenance of genomic integrity. The current model places BRCA2 as a central regulator of genome stability by repairing DSBs and limiting replication stress. These findings have direct implications for the development of novel anticancer therapeutic approaches.


Nature Biotechnology | 2017

Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR–Cas9 genome-editing efficiency

Marella D. Canny; Nathalie Moatti; Leo Wan; Amélie Fradet-Turcotte; Danielle Krasner; Pedro A Mateos-Gomez; Michal Zimmermann; Alexandre Orthwein; Yu-Chi Juang; Wei Zhang; Sylvie M. Noordermeer; Eduardo Seclen; Marcus D Wilson; Andrew Vorobyov; Meagan Munro; Andreas Ernst; Timothy F. Ng; Tiffany Cho; Paula M. Cannon; Sachdev S. Sidhu; Frank Sicheri; Daniel Durocher

Programmable nucleases, such as Cas9, are used for precise genome editing by homology-dependent repair (HDR). However, HDR efficiency is constrained by competition from other double-strand break (DSB) repair pathways, including non-homologous end-joining (NHEJ). We report the discovery of a genetically encoded inhibitor of 53BP1 that increases the efficiency of HDR-dependent genome editing in human and mouse cells. 53BP1 is a key regulator of DSB repair pathway choice in eukaryotic cells and functions to favor NHEJ over HDR by suppressing end resection, which is the rate-limiting step in the initiation of HDR. We screened an existing combinatorial library of engineered ubiquitin variants for inhibitors of 53BP1. Expression of one variant, named i53 (inhibitor of 53BP1), in human and mouse cells, blocked accumulation of 53BP1 at sites of DNA damage and improved gene targeting and chromosomal gene conversion with either double-stranded DNA or single-stranded oligonucleotide donors by up to 5.6-fold. Inhibition of 53BP1 is a robust method to increase efficiency of HDR-based precise genome editing.


Current Gene Therapy | 2018

CRISPR/Cas9 Gene Editing: From Basic Mechanisms To Improved Strategies For Enhanced Genome Engineering In Vivo

Jayme Salsman; Jean-Yves Masson; Alexandre Orthwein; Graham Dellaire

INTRODUCTION Targeted genome editing using the CRISPR/Cas9 technology is becoming a major area of research due to its high potential for the treatment of genetic diseases. Our understanding of this approach has expanded in recent years yet several new challenges have presented themselves as we explore the boundaries of this exciting new technology. Chief among these is improving the efficiency but also the preciseness of genome editing. The efficacy of CRISPR/Cas9 technology relies in part on the use of one of the major DNA repair pathways, Homologous recombination (HR), which is primarily active in S and G2 phases of the cell cycle. Problematically, the HR potential is highly variable from cell type to cell type and most of the cells of interest to be targeted in vivo for precise genome editing are in a quiescent state. CONCLUSION In this review, we discuss the recent advancements in improving targeted CRISPR/Cas9 based genome editing and the promising ways of delivering this technology in vivo to the cells of interest.


bioRxiv | 2016

A genetically encoded inhibitor of 53BP1 to 1 stimulate homology-based gene editing

Marella D. Canny; Leo Wan; Amélie Fradet-Turcotte; Alexandre Orthwein; Nathalie Moatti; Yu-Chi Juang; Wei Zhang; Sylvie M Noordermeer; Marcus D Wilson; Andrew Vorobyov; Meagan Munro; Andreas Ernst; Michal Zimmermann; Timothy F Ng; Sachdev S. Sidhu; Frank Sicheri; Daniel Durocher

The expanding repertoire of programmable nucleases such as Cas9 brings new opportunities in genetic medicine1–3. In many cases, these nucleases are engineered to induce a DNA double-strand break (DSB) to stimulate precise genome editing by homologous recombination (HR). However, HR efficiency is nearly always hindered by competing DSB repair pathways such as non-homologous end-joining (NHEJ). HR is also profoundly suppressed in non-replicating cells, thus precluding the use of homology-based genome engineering in a wide variety4 of cell types. Here, we report the development of a genetically encoded inhibitor of 53BP1 (known as TP53BP1), a regulator of DSB repair pathway choice5. 53BP1 promotes NHEJ over HR by suppressing end resection, the formation of 3-prime single-stranded DNA tails, which is the rate-limiting step in HR initiation. 53BP1 also blocks the recruitment of the HR factor BRCA1 to DSB sites in G1 cells4,6. The inhibitor of 53BP1 (or i53) was identified through the screening of a massive combinatorial library of engineered ubiquitin variants by phage display7. i53 binds and occludes the ligand binding site of the 53BP1 Tudor domain with high affinity and selectivity, blocking its ability to accumulate at sites of DNA damage. i53 is a potent selective inhibitor of 53BP1 and enhances gene targeting and chromosomal gene conversion, two HR-dependent reactions. Finally, i53 can also activate HR in G1 cells when combined with the activation of end-resection and KEAP1 inhibition. We conclude that 53BP1 inhibition is a robust tool to enhance precise genome editing by canonical HR pathways.


The EMBO Journal | 2018

SHLD2/FAM35A co‐operates with REV7 to coordinate DNA double‐strand break repair pathway choice

Steven Findlay; John Heath; Vincent M. Luo; Abba Malina; Théo Morin; Yan Coulombe; Billel Djerir; Zhigang Li; Arash Samiei; Estelle Simo‐Cheyou; Martin Karam; Halil Bagci; Dolev Rahat; Damien Grapton; Elise G Lavoie; Christian Dove; Husam Khaled; Hellen Kuasne; Koren K. Mann; Kathleen Oros Klein; Celia M. T. Greenwood; Yuval Tabach; Morag Park; Jean-François Côté; Jean-Yves Masson; Alexandre Maréchal; Alexandre Orthwein

DNA double‐strand breaks (DSBs) can be repaired by two major pathways: non‐homologous end‐joining (NHEJ) and homologous recombination (HR). DNA repair pathway choice is governed by the opposing activities of 53BP1, in complex with its effectors RIF1 and REV7, and BRCA1. However, it remains unknown how the 53BP1/RIF1/REV7 complex stimulates NHEJ and restricts HR to the S/G2 phases of the cell cycle. Using a mass spectrometry (MS)‐based approach, we identify 11 high‐confidence REV7 interactors and elucidate the role of SHLD2 (previously annotated as FAM35A and RINN2) as an effector of REV7 in the NHEJ pathway. FAM35A depletion impairs NHEJ‐mediated DNA repair and compromises antibody diversification by class switch recombination (CSR) in B cells. FAM35A accumulates at DSBs in a 53BP1‐, RIF1‐, and REV7‐dependent manner and antagonizes HR by limiting DNA end resection. In fact, FAM35A is part of a larger complex composed of REV7 and SHLD1 (previously annotated as C20orf196 and RINN3), which promotes NHEJ and limits HR. Together, these results establish SHLD2 as a novel effector of REV7 in controlling the decision‐making process during DSB repair.

Collaboration


Dive into the Alexandre Orthwein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge