Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandre Sarre is active.

Publication


Featured researches published by Alexandre Sarre.


European Heart Journal | 2015

Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs

Samir Ounzain; Rudi Micheletti; Tal Beckmann; Blanche Schroen; Michael Alexanian; Iole Pezzuto; Stefania Crippa; Mohamed Nemir; Alexandre Sarre; Rory Johnson; Jérôme Dauvillier; Frédéric Burdet; Mark Ibberson; Roderic Guigó; Ioannis Xenarios; Stephane Heymans; Thierry Pedrazzini

Aim Heart disease is recognized as a consequence of dysregulation of cardiac gene regulatory networks. Previously, unappreciated components of such networks are the long non-coding RNAs (lncRNAs). Their roles in the heart remain to be elucidated. Thus, this study aimed to systematically characterize the cardiac long non-coding transcriptome post-myocardial infarction and to elucidate their potential roles in cardiac homoeostasis. Methods and results We annotated the mouse transcriptome after myocardial infarction via RNA sequencing and ab initio transcript reconstruction, and integrated genome-wide approaches to associate specific lncRNAs with developmental processes and physiological parameters. Expression of specific lncRNAs strongly correlated with defined parameters of cardiac dimensions and function. Using chromatin maps to infer lncRNA function, we identified many with potential roles in cardiogenesis and pathological remodelling. The vast majority was associated with active cardiac-specific enhancers. Importantly, oligonucleotide-mediated knockdown implicated novel lncRNAs in controlling expression of key regulatory proteins involved in cardiogenesis. Finally, we identified hundreds of human orthologues and demonstrate that particular candidates were differentially modulated in human heart disease. Conclusion These findings reveal hundreds of novel heart-specific lncRNAs with unique regulatory and functional characteristics relevant to maladaptive remodelling, cardiac function and possibly cardiac regeneration. This new class of molecules represents potential therapeutic targets for cardiac disease. Furthermore, their exquisite correlation with cardiac physiology renders them attractive candidate biomarkers to be used in the clinic.


European Heart Journal | 2014

The Notch pathway controls fibrotic and regenerative repair in the adult heart

Mohamed Nemir; Mélanie Metrich; Isabelle Plaisance; Mario Lepore; Steeve Cruchet; Corinne Berthonneche; Alexandre Sarre; Freddy Radtke; Thierry Pedrazzini

Aims In the adult heart, Notch signalling regulates the response to injury. Notch inhibition leads to increased cardiomyocyte apoptosis, and exacerbates the development of cardiac hypertrophy and fibrosis. The role of Notch in the mesenchymal stromal cell fraction, which contains cardiac fibroblasts and cardiac precursor cells, is, however, largely unknown. In the present study, we evaluate, therefore, whether forced activation of the Notch pathway in mesenchymal stromal cells regulates pathological cardiac remodelling. Methods and results We generated transgenic mice overexpressing the Notch ligand Jagged1 on the surface of cardiomyocytes to activate Notch signalling in adjacent myocyte and non-myocyte cells. In neonatal transgenic mice, activated Notch sustained cardiac precursor and myocyte proliferation after birth, and led to increased numbers of cardiac myocytes in adult mice. In the adult heart under pressure overload, Notch inhibited the development of cardiomyocyte hypertrophy and transforming growth factor-β/connective tissue growth factor-mediated cardiac fibrosis. Most importantly, Notch activation in the stressed adult heart reduced the proliferation of myofibroblasts and stimulated the expansion of stem cell antigen-1-positive cells, and in particular of Nkx2.5-positive cardiac precursor cells. Conclusions We conclude that Notch is pivotal in the healing process of the injured heart. Specifically, Notch regulates key cellular mechanisms in the mesenchymal stromal cell population, and thereby controls the balance between fibrotic and regenerative repair in the adult heart. Altogether, these findings indicate that Notch represents a unique therapeutic target for inducing regeneration in the adult heart via mobilization of cardiac precursor cells.


Journal of Molecular and Cellular Cardiology | 2014

Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease

Samir Ounzain; Iole Pezzuto; Rudi Micheletti; Frédéric Burdet; Razan Sheta; Mohamed Nemir; Christine Gonzales; Alexandre Sarre; Michael Alexanian; Matthew J. Blow; Dalit May; Rory Johnson; Jérôme Dauvillier; Len A. Pennacchio; Thierry Pedrazzini

The key information processing units within gene regulatory networks are enhancers. Enhancer activity is associated with the production of tissue-specific noncoding RNAs, yet the existence of such transcripts during cardiac development has not been established. Using an integrated genomic approach, we demonstrate that fetal cardiac enhancers generate long noncoding RNAs (IncRNAs) during cardiac differentiation and morphogenesis. Enhancer expression correlates with the emergence of active enhancer chromatin states, the initiation of RNA polymerase II at enhancer loci and expression of target genes. Orthologous human sequences are also transcribed in fetal human hearts and cardiac progenitor cells. Through a systematic bioinformatic analysis, we identified and characterized, for the first time, a catalog of IncRNAs that are expressed during embryonic stem cell differentiation into cardiomyocytes and associated with active cardiac enhancer sequences. RNA-sequencing demonstrates that many of these transcripts are polyadenylated, multi-exonic long noncoding RNAs. Moreover, knockdown of two enhancer-associated IncRNAs resulted in the specific downregulation of their predicted target genes. Interestingly, the reactivation of the fetal gene program, a hallmark of the stress response in the adult heart, is accompanied by increased expression of fetal cardiac enhancer transcripts. Altogether, these findings demonstrate that the activity of cardiac enhancers and expression of their target genes are associated with the production of enhancer-derived IncRNAs.


Nature | 2015

HIF-driven SF3B1 induces KHK-C to enforce fructolysis and heart disease

Peter Mirtschink; Jaya Krishnan; Fiona Grimm; Alexandre Sarre; Manuel Hörl; Melis Kayikci; Niklaus Fankhauser; Yann Christinat; Cédric Cortijo; Owen Feehan; Ana Vukolic; Samuel Sossalla; Sebastian Stehr; Jernej Ule; Nicola Zamboni; Thierry Pedrazzini; Wilhelm Krek

Fructose is a major component of dietary sugar and its overconsumption exacerbates key pathological features of metabolic syndrome. The central fructose-metabolising enzyme is ketohexokinase (KHK), which exists in two isoforms: KHK-A and KHK-C, generated through mutually exclusive alternative splicing of KHK pre-mRNAs. KHK-C displays superior affinity for fructose compared with KHK-A and is produced primarily in the liver, thus restricting fructose metabolism almost exclusively to this organ. Here we show that myocardial hypoxia actuates fructose metabolism in human and mouse models of pathological cardiac hypertrophy through hypoxia-inducible factor 1α (HIF1α) activation of SF3B1 and SF3B1-mediated splice switching of KHK-A to KHK-C. Heart-specific depletion of SF3B1 or genetic ablation of Khk, but not Khk-A alone, in mice, suppresses pathological stress-induced fructose metabolism, growth and contractile dysfunction, thus defining signalling components and molecular underpinnings of a fructose metabolism regulatory system crucial for pathological growth.


Journal of Cardiovascular Electrophysiology | 2006

Arrhythmogenesis in the Developing Heart During Anoxia‐Reoxygenation and Hypothermia‐Rewarming: An In Vitro Model

Alexandre Sarre; Philippe Maury; Pavel Kucera; Lukas Kappenberger; Eric Raddatz

Introduction: The spatio‐temporal pattern of arrhythmias in the embryonic/fetal heart subjected to a transient hypoxic or hypothermic stress remains to be established.


Science Translational Medicine | 2017

The long noncoding RNA Wisper controls cardiac fibrosis and remodeling

Rudi Micheletti; Isabelle Plaisance; Brian J. Abraham; Alexandre Sarre; Ching-Chia Ting; Michael Alexanian; Daniel Maric; Damien Maison; Mohamed Nemir; Richard A. Young; Blanche Schroen; Arantxa González; Samir Ounzain; Thierry Pedrazzini

A super-enhancer–associated long noncoding RNA, Wisper, controls cardiac fibrosis and pathological remodeling in the damaged heart. “Lnc”ing fibroblasts to cardiac fibrosis Therapies for myocardial infarction or injury typically focus on cardiomyocytes, the contractile cells of the heart. However, cardiac fibroblasts deposit extracellular matrix to compensate for reduced cardiac function, playing a key role in the pathogenesis of heart failure. Micheletti et al. identified a super-enhancer–associated long noncoding RNA, Wisper, enriched in cardiac fibroblasts and up-regulated in infarcted mouse heart tissue. Treating mice with antisense oligonucleotides to Wisper after infarction, when fibrosis was already initiated, reduced the expression of collagens and cardiac stress markers, decreased tissue remodeling, and improved cardiac function and survival. WISPER expression was increased in human tissue samples from patients with aortic stenosis and correlated with collagen volume fraction and severity of fibrosis. Fibroblast-specific long noncoding RNAs may be useful targets for fibrosis therapies. Long noncoding RNAs (lncRNAs) are emerging as powerful regulators of cardiac development and disease. However, our understanding of the importance of these molecules in cardiac fibrosis is limited. Using an integrated genomic screen, we identified Wisper (Wisp2 super-enhancer–associated RNA) as a cardiac fibroblast–enriched lncRNA that regulates cardiac fibrosis after injury. Wisper expression was correlated with cardiac fibrosis both in a murine model of myocardial infarction (MI) and in heart tissue from human patients suffering from aortic stenosis. Loss-of-function approaches in vitro using modified antisense oligonucleotides (ASOs) demonstrated that Wisper is a specific regulator of cardiac fibroblast proliferation, migration, and survival. Accordingly, ASO-mediated silencing of Wisper in vivo attenuated MI-induced fibrosis and cardiac dysfunction. Functionally, Wisper regulates cardiac fibroblast gene expression programs critical for cell identity, extracellular matrix deposition, proliferation, and survival. In addition, its association with TIA1-related protein allows it to control the expression of a profibrotic form of lysyl hydroxylase 2, implicated in collagen cross-linking and stabilization of the matrix. Together, our findings identify Wisper as a cardiac fibroblast–enriched super-enhancer–associated lncRNA that represents an attractive therapeutic target to reduce the pathological development of cardiac fibrosis in response to MI and prevent adverse remodeling in the damaged heart.


American Journal of Physiology-heart and Circulatory Physiology | 2011

Differential contribution of mitochondria, NADPH oxidases, and glycolysis to region-specific oxidant stress in the anoxic-reoxygenated embryonic heart

Eric Raddatz; Anne-Catherine Thomas; Alexandre Sarre; Messod Benathan

The ability of the developing myocardium to tolerate oxidative stress during early gestation is an important issue with regard to possible detrimental consequences for the fetus. In the embryonic heart, antioxidant defences are low, whereas glycolytic flux is high. The pro- and antioxidant mechanisms and their dependency on glucose metabolism remain to be explored. Isolated hearts of 4-day-old chick embryos were exposed to normoxia (30 min), anoxia (30 min), and hyperoxic reoxygenation (60 min). The time course of ROS production in the whole heart and in the atria, ventricle, and outflow tract was established using lucigenin-enhanced chemiluminescence. Cardiac rhythm, conduction, and arrhythmias were determined. The activity of superoxide dismutase, catalase, gutathione reductase, and glutathione peroxidase as well as the content of reduced and oxidized glutathione were measured. The relative contribution of the ROS-generating systems was assessed by inhibition of mitochondrial complexes I and III (rotenone and myxothiazol), NADPH oxidases (diphenylene iodonium and apocynine), and nitric oxide synthases (N-monomethyl-L-arginine and N-iminoethyl-L-ornithine). The effects of glycolysis inhibition (iodoacetate), glucose deprivation, glycogen depletion, and lactate accumulation were also investigated. In untreated hearts, ROS production peaked at 10.8 ± 3.3, 9 ± 0.8, and 4.8 ± 0.4 min (means ± SD; n = 4) of reoxygenation in the atria, ventricle, and outflow tract, respectively, and was associated with arrhythmias. Functional recovery was complete after 30-40 min. At reoxygenation, 1) the respiratory chain and NADPH oxidases were the main sources of ROS in the atria and outflow tract, respectively; 2) glucose deprivation decreased, whereas glycogen depletion increased, oxidative stress; 3) lactate worsened oxidant stress via NADPH oxidase activation; 4) glycolysis blockade enhanced ROS production; 5) no nitrosative stress was detectable; and 6) the glutathione redox cycle appeared to be a major antioxidant system. Thus, the glycolytic pathway plays a predominant role in reoxygenation-induced oxidative stress during early cardiogenesis. The relative contribution of mitochondria and extramitochondrial systems to ROS generation varies from one region to another and throughout reoxygenation.


Pharmacological Research | 2010

Specific inhibition of HCN channels slows rhythm differently in atria, ventricle and outflow tract and stabilizes conduction in the anoxic-reoxygenated embryonic heart model

Alexandre Sarre; Sarah Pedretti; Stephany Gardier; Eric Raddatz

The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed in pacemaker cells very early during cardiogenesis. This work aimed at determining to what extent these channels are implicated in the electromechanical disturbances induced by a transient oxygen lack which may occur in utero. Spontaneously beating hearts or isolated ventricles and outflow tracts dissected from 4-day-old chick embryos were exposed to a selective inhibitor of HCN channels (ivabradine 0.1-10microM) to establish a dose-response relationship. The effects of ivabradine on electrocardiogram, excitation-contraction coupling and contractility of hearts submitted to anoxia (30min) and reoxygenation (60min) were also determined. The distribution of the predominant channel isoform, HCN4, was established in atria, ventricle and outflow tract by immunoblotting. Intrinsic beating rate of atria, ventricle and outflow tract was 164+/-22 (n=10), 78+/-24 (n=8) and 40+/-12bpm (n=23, mean+/-SD), respectively. In the whole heart, ivabradine (0.3microM) slowed the firing rate of atria by 16% and stabilized PR interval. These effects persisted throughout anoxia-reoxygenation, whereas the variations of QT duration, excitation-contraction coupling and contractility, as well as the types and duration of arrhythmias were not altered. Ivabradine (10microM) reduced the intrinsic rate of atria and isolated ventricle by 27% and 52%, respectively, whereas it abolished activity of the isolated outflow tract. Protein expression of HCN4 channels was higher in atria and ventricle than in the outflow tract. Thus, HCN channels are specifically distributed and control finely atrial, ventricular and outflow tract pacemakers as well as conduction in the embryonic heart under normoxia and throughout anoxia-reoxygenation.


Molecular and Cellular Biochemistry | 2004

Ventricular but not atrial electro-mechanical delay of the embryonic heart is altered by anoxia-reoxygenation and improved by nitric oxide.

Philippe Maury; Alexandre Sarre; Jérôme Terrand; Antonio Rosa; Pavel Kucera; Lukas Kappenberger; Eric Raddatz

Background/Aim. Excitation–contraction coupling is modulated by nitric oxide (NO) which otherwise has either beneficial or detrimental effects on myocardial function during hypoxia-reoxygenation. This work aimed at characterizing the variations of electromechanical delay (EMD) induced by anoxia-reoxygenation within the developing heart and determining whether atrial and ventricular EMD are modulated by NO to the same extent. Methods. Hearts of 4 or 4.5-day-old chick embryos were excised and submitted in vitro to normoxia (45 min), anoxia (30 min) and reoxygenation (60 min). Electrocardiogram and atrial and ventricular contractions were simultaneously recorded throughout experiment. Anoxia-reoxygenation-induced chrono-, dromo- and inotropic disturbances and changes in EMD in atrium (EMDa) and ventricle (EMDv) were investigated in control hearts and in hearts exposed to 0.1, 1, 10, 50 and 100 μM of DETA-NONOate (a NO donating agent) or to 50 μM of L-NAME (a NOS inhibitor). Results. Under normoxia, heart rate, PR interval, ventricular shortening velocity, EMDa and EMDv were similar in control, L-NAME-treated and DETA-NONOate-treated hearts. Under anoxia, cardiac activity became markedly erratic within less than 10 min in all groups. At the onset of reoxygenation, EMDv was increased by about 300% with respect to the preanoxic value while EMDa did not vary significatively. Compared to control conditions, L-NAME or DETA-NONOate had no influence on the negative chrono-, dromo- and inotropic effects induced by anoxia-reoxygenation. However, L-NAME prolonged EMDv during anoxia and delayed EMDv recovery during reoxygenation while 100 μM DETA-NONOate had the opposite effects. EMDa was neither affected by NOS inhibitor nor NO donor. At the end of reoxygenation, all the investigated parameters returned to their basal values. Conclusion. This work provides evidence that a NO-dependent pathway is involved in regulation of the ventricular excitation-contraction coupling in the anoxic-reoxygenated developing heart. (Mol Cell Biochem 265: 141–149, 2004)


Cardiovascular Research | 2016

Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways

Stefania Crippa; Mohamed Nemir; Samir Ounzain; Mark Ibberson; Corinne Berthonneche; Alexandre Sarre; Gaëlle Boisset; Damien Maison; Keith Harshman; Ioannis Xenarios; Dario Diviani; Daniel F. Schorderet; Thierry Pedrazzini

Aims The adult mammalian heart has poor regenerative capacity. In contrast, the zebrafish heart retains a robust capacity for regeneration into adulthood. These distinct responses are consequences of a differential utilization of evolutionary-conserved gene regulatory networks in the damaged heart. To systematically identify miRNA-dependent networks controlling cardiac repair following injury, we performed comparative gene and miRNA profiling of the cardiac transcriptome in adult mice and zebrafish. Methods and results Using an integrated approach, we show that 45 miRNA-dependent networks, involved in critical biological pathways, are differentially modulated in the injured zebrafish vs. mouse hearts. We study, more particularly, the miR-26a-dependent response. Therefore, miR-26a is down-regulated in the fish heart after injury, whereas its expression remains constant in the mouse heart. Targets of miR-26a involve activators of the cell cycle and Ezh2, a component of the polycomb repressive complex 2 (PRC2). Importantly, PRC2 exerts repressive functions on negative regulators of the cell cycle. In cultured neonatal cardiomyocytes, inhibition of miR-26a stimulates, therefore, cardiomyocyte proliferation. Accordingly, miR-26a knockdown prolongs the proliferative window of cardiomyocytes in the post-natal mouse heart. Conclusions This novel strategy identifies a series of miRNAs and associated pathways, in particular miR-26a, which represent attractive therapeutic targets for inducing repair in the injured heart.

Collaboration


Dive into the Alexandre Sarre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Freddy Radtke

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge