Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandre Zanchet is active.

Publication


Featured researches published by Alexandre Zanchet.


Journal of Physical Chemistry A | 2009

Differential Cross Sections and Product Rotational Polarization in A + BC Reactions Using Wave Packet Methods: H+ + D2 and Li + HF Examples

Alexandre Zanchet; Octavio Roncero; Tomás González-Lezana; Rodríguez-López A; Alfredo Aguado; Sanz-Sanz C; Susana Gómez-Carrasco

The state-to-state differential cross sections for some atom + diatom reactions have been calculated using a new wave packet code, MAD-WAVE3, which is described in some detail and uses either reactant or product Jacobi coordinates along the propagation. In order to show the accuracy and efficiency of the coordinate transformation required when using reactant Jacobi coordinates, as recently proposed [ J. Chem. Phys. 2006 , 125 , 054102 ], the method is first applied to the H + D(2) reaction as a benchmark, for which exact time-independent calculations are also performed. It is found that the use of reactant coordinates yields accurate results, with a computational effort slightly lower than that when using product coordinates. The H(+) + D(2) reaction, with the same masses but a much deeper insertion well, is also studied and exhibits a completely different mechanism, a complex-forming one which can be treated by statistical methods. Due to the longer range of the potential, product Jacobi coordinates are more efficient in this case. Differential cross sections for individual final rotational states of the products are obtained based on exact dynamical calculations for some selected total angular momenta, combined with the random phase approximation to save the high computational time required to calculate all partial waves with very long propagations. The results obtained are in excellent agreement with available exact time-independent calculations. Finally, the method is applied to the Li + HF system for which reactant coordinates are very well suited, and quantum differential cross sections are not available. The results are compared with recent quasiclassical simulations and experimental results [J. Chem. Phys. 2005, 122, 244304]. Furthermore, the polarization of the product angular momenta is also analyzed as a function of the scattering angle.


Journal of Chemical Physics | 2009

A density-division embedding potential inversion technique

Octavio Roncero; Alexandre Zanchet; Alfredo Aguado

A new method is proposed to partition the density of a system in two portions. The density on each subsystem is the solution of a Fock equation modified by the addition of an embedding potential. This embedding potential is obtained iteratively by minimizing the difference between the electronic densities of the total system and the sum of the subsystems. Thus, the electronic density partition and the embedding potential are obtained at the same time within the procedure, guaranteeing the v-representability of the densities partitioned. This fact is a considerable improvement of a recently proposed embedding potential inversion technique, [O. Roncero, M. P. de Lara-Castells, P. Villarreal, F. Flores, J. Ortega, M. Paniagua, and A. Aguado, J. Chem. Phys. 129, 184104 (2008)], in which the embedding potential is obtained once the electronic density is previously partitioned. The method is first applied to a linear H(10) chain to illustrate how it works. The orbitals obtained are localized on each subsystem, and can be used to include local electronic correlation with currently available ab initio programs. Finally, the method is applied to include the electronic correlation needed to describe the van der Waals interaction between H(10) chains and H(2) molecules, of approximately 12 meV, giving very accurate results.


The Astrophysical Journal | 2013

H2(v = 0,1) + C+(2 P) → H+CH+ STATE-TO-STATE RATE CONSTANTS FOR CHEMICAL PUMPING MODELS IN ASTROPHYSICAL MEDIA

Alexandre Zanchet; B. Godard; Niyazi Bulut; Octavio Roncero; Philippe Halvick; J. Cernicharo

State-to-state rate constants for the title reaction are calculated using the electronic ground state potential energy surface and an accurate quantum wave-packet method. The calculations are performed for H{sub 2} in different rovibrational states, v = 0, 1 and J = 0 and 1. The simulated reaction cross section for v = 0 shows a rather good agreement with the experimental results of Gerlich et al., both with a threshold of 0.36 eV and within the experimental error of 20%. The total reaction rate coefficients simulated for v = 1 are two times smaller than those estimated by Hierl et al. from cross sections measured at different temperatures and neglecting the contribution from v > 1 with an uncertainty factor of two. Thus, part of the disagreement is attributed to the contributions of v > 1. The computed state-to-state rate coefficients are used in our radiative transfer model code applied to the conditions of the Orion Bar photodissociation region, and leads to an increase of the line fluxes of high-J lines of CH{sup +}. This result partially explains the discrepancies previously found with measurements and demonstrates that CH{sup +} excitation is mostly driven by chemical pumping.


Journal of Chemical Physics | 2012

Dynamically biased statistical model for the ortho/para conversion in the H2+H3+ → H3++ H2 reaction

Susana Gómez-Carrasco; Lola González-Sánchez; Alfredo Aguado; Cristina Sanz-Sanz; Alexandre Zanchet; Octavio Roncero

In this work we present a dynamically biased statistical model to describe the evolution of the title reaction from statistical to a more direct mechanism, using quasi-classical trajectories (QCT). The method is based on the one previously proposed by Park and Light [J. Chem. Phys. 126, 044305 (2007)]. A recent global potential energy surface is used here to calculate the capture probabilities, instead of the long-range ion-induced dipole interactions. The dynamical constraints are introduced by considering a scrambling matrix which depends on energy and determine the probability of the identity/hop/exchange mechanisms. These probabilities are calculated using QCT. It is found that the high zero-point energy of the fragments is transferred to the rest of the degrees of freedom, what shortens the lifetime of H(5)(+) complexes and, as a consequence, the exchange mechanism is produced with lower proportion. The zero-point energy (ZPE) is not properly described in quasi-classical trajectory calculations and an approximation is done in which the initial ZPE of the reactants is reduced in QCT calculations to obtain a new ZPE-biased scrambling matrix. This reduction of the ZPE is explained by the need of correcting the pure classical level number of the H(5)(+) complex, as done in classical simulations of unimolecular processes and to get equivalent quantum and classical rate constants using Rice-Ramsperger-Kassel-Marcus theory. This matrix allows to obtain a ratio of hop/exchange mechanisms, α(T), in rather good agreement with recent experimental results by Crabtree et al. [J. Chem. Phys. 134, 194311 (2011)] at room temperature. At lower temperatures, however, the present simulations predict too high ratios because the biased scrambling matrix is not statistical enough. This demonstrates the importance of applying quantum methods to simulate this reaction at the low temperatures of astrophysical interest.


Journal of Physical Chemistry A | 2011

Theoretical study of Rb2 in He(N): potential energy surface and Monte Carlo simulations.

Grégroire Guillon; Alexandre Zanchet; Markku Leino; Alexandra Viel; Robert E. Zillich

An analytical potential energy surface for a rigid Rb₂ in the ³Σ(u)⁺ state interacting with one helium atom based on accurate ab initio computations is proposed. This 2-dimensional potential is used, together with the pair approximation approach, to investigate Rb₂ attached to small helium clusters He(N) with N = 1-6, 12, and 20 by means of quantum Monte Carlo studies. The limit of large clusters is approximated by a flat helium surface. The relative orientation of the dialkali axis and the helium surface is found to be parallel. Dynamical investigations of the pendular and of the in-plane rotation of the rigid Rb₂ molecule on the surface are presented.


Journal of Physical Chemistry A | 2010

Nonadiabatic State-to-State Reactive Collisions among Open Shell Reactants with Conical Intersections: The OH(2Π) + F(2P) Example

Alexandre Zanchet; Tomás González-Lezana; Alfredo Aguado; Susana Gómez-Carrasco; Octavio Roncero

Accurate wave packet calculations on the OH((2)Pi) + F((2)P) → O((3)P) + HF((1)Sigma(+)) reactive collisions are performed using a recently proposed coupled diabatic states. Adiabatic and nonadiabatic dynamics are compared in detail, analyzing the final state distribution of products. It is found that with the new surfaces a significant increase of the rate constant is obtained, with noticeable nonadiabatic effects. The inclusion of the spin-orbit splittings for the calculation of the electronic partition function produces an important increase of the reaction rate constants, yielding a rather good agreement with the experimental results. It is also concluded that spin-orbit couplings are also necessary in the entrance channel to describe this reaction.


Physical Chemistry Chemical Physics | 2009

Mechanism of molecular hydrogen dissociation on gold chains and clusters as model prototypes of nanostructures

Alexandre Zanchet; Anais Dorta-Urra; Octavio Roncero; F. Flores; C. Tablero; Miguel Paniagua; Alfredo Aguado

The reactivity of H(2) on several gold clusters is studied using density functional theory with generalized gradient approximation methods, as model systems designed to study the main effects determining their catalytic properties under controlled conditions. Border effects are studied in finite linear gold chains of increasing size and compared with the corresponding periodic systems. In these linear chains, the reaction can proceed with no barrier along the minimum energy path, presenting a deep chemisorption well of approximately 1.4 eV. The mechanism presents an important dependence on the initial attacking site of the chain. Linear Au(4) chains joined to model-nanocontacts, formed by 2 or 3 gold atoms, in a planar triangle or in a pyramid, respectively, are also studied. The reaction barriers found in these two cases are approximately 0.24 and 0.16 eV, respectively, corresponding to H(2) attacking the more coordinated edge atom of the linear chain. The study is extended to planar clusters with coordinations IV and VI, for which higher H(2) dissociation barriers are found. However, when the planar gold clusters are folded, and the Au-Au distances elongated, the reactivity increases considerably. This is not due to a change of coordination, but to a larger flexibility of the gold orbitals to form bonds with hydrogen atoms, when the planar sd-hybridization is broken. Finally, it is concluded that the major factor determining the reactivity of gold clusters is not strictly the coordination of gold atoms but their binding structure and some border effects.


The Astronomical Journal | 2013

Sulfur Chemistry in the Interstellar Medium: The Effect of Vibrational Excitation of H2 in the Reaction S++H2 →SH++H

Alexandre Zanchet; M. Agúndez; Víctor J. Herrero; Alfredo Aguado; Octavio Roncero

Specific rate constants for the S++H2 reaction are calculated using the ground quartet state potential energy surface and quasi-classical trajectories method. The calculations are performed for H2 in different vibrational states v = 0-4 and thermal conditions for rotational and translational energies. The calculations lead to slow rate constants for the H2 vibrational levels v = 0, 1, but a significant enhancement of reactivity is observed when v > 1. The inverse reaction is also studied and rate constants for v = 0 are presented. For comparison, we also recompile previous results of state-to-state rate constants of the C++H2 for H2 in rovibrational state v, j = (0,0), (1,0), (1,1), and (2,0). The calculated rate coefficients are fitted using an improved form of the standard three-parameter Arrhenius-like equation, which is found to be very accurate in fitting rate constants over a wide range of temperatures (10-4000 K). We investigate the impact of the calculated rate coefficients on the formation of SH+ in the photon-dominated region Orion Bar and find an abundance enhancement of nearly three orders of magnitude when the reaction of S+ with vibrationally excited H2 is taken into account. The title reaction is thus one of the principal mechanisms in forming SH+ in interstellar clouds.


Journal of Chemical Physics | 2011

Communication: Theoretical exploration of Au++H2, D2, and HD reactive collisions

Anais Dorta-Urra; Alexandre Zanchet; Octavio Roncero; Alfredo Aguado

A quasi-classical study of the endoergic Au(+)((1)S) + H(2)(X(1)Σ(g)(+)) → AuH(+) ((2)Σ(+)) + H((2)S) reaction, and isotopic variants, is performed to compare with recent experimental results [F. Li, C. S. Hinton, M. Citir, F. Liu, and P. B. Armentrout, J. Chem. Phys. 134, 024310 (2011)]. For this purpose, a new global potential energy surface has been developed based on multi-reference configuration interaction ab initio calculations. The quasi-classical trajectory results show a very good agreement with the experiments, showing the same trends for the different isotopic variants of the hydrogen molecule. It is also found that the total dissociation into three fragments, Au(+)+H+H, is the dominant reaction channel for energies above the H(2) dissociation energy. This results from a well in the entrance channel of the potential energy surface, which enhances the probability of H-Au-H insertion.


The Astrophysical Journal | 2017

Is the Gas-phase OH+H2CO Reaction a Source of HCO in Interstellar Cold Dark Clouds? A Kinetic, Dynamic, and Modeling Study

A. J. Ocaña; Elena Jiménez; B. Ballesteros; André Canosa; M. Antiñolo; J. Albaladejo; M. Agúndez; J. Cernicharo; Alexandre Zanchet; P. del Mazo; O. Roncero; Alfredo Aguado

Chemical kinetics of neutral-neutral gas-phase reactions at ultralow temperatures is a fascinating research subject with important implications on the chemistry of complex organic molecules in the interstellar medium (T∼10-100K). Scarce kinetic information is currently available for this kind of reactions at T<200 K. In this work we use the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, which means Reaction Kinetics in a Uniform Supersonic Flow) technique to measure for the first time the rate coefficients (k) of the gas-phase OH+H2CO reaction between 22 and 107 K. k values greatly increase from 2.1×10-11 cm3 s-1 at 107 K to 1.2×10-10 cm3 s-1 at 22 K. This is also confirmed by quasi-classical trajectories (QCT) at collision energies down to 0.1 meV performed using a new full dimension and ab initio potential energy surface, recently developed which generates highly accurate potential and includes long range dipole-dipole interactions. QCT calculations indicate that at low temperatures HCO is the exclusive product for the OH+H2CO reaction. In order to revisit the chemistry of HCO in cold dense clouds, k is reasonably extrapolated from the experimental results at 10K (2.6×10-10 cm3 s-1). The modeled abundances of HCO are in agreement with the observations in cold dark clouds for an evolving time of 105-106 yrs. The different sources of production of HCO are presented and the uncertainties in the chemical networks discussed. This reaction can be expected to be a competitive process in the chemistry of prestellar cores. The present reaction is shown to account for a few percent of the total HCO production rate. Extensions to photodissociation regions and diffuse clouds environments are also commented.

Collaboration


Dive into the Alexandre Zanchet's collaboration.

Top Co-Authors

Avatar

Octavio Roncero

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Alfredo Aguado

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

L. Bañares

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

María Luisa Senent

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Anais Dorta-Urra

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

J. Cernicharo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

M. Agúndez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Víctor J. Herrero

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

A. García-Vela

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Belén Maté

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge