Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandrina Untaroiu is active.

Publication


Featured researches published by Alexandrina Untaroiu.


Asaio Journal | 2004

Design and Transient Computational Fluid Dynamics Study of a Continuous Axial Flow Ventricular Assist Device

Xinwei Song; Alexandrina Untaroiu; Houston G. Wood; Paul E. Allaire; Amy L. Throckmorton; Steven W. Day; Don B. Olsen

A ventricular assist device (VAD), which is a miniaturized axial flow pump from the point of view of mechanism, has been designed and studied in this report. It consists of an inducer, an impeller, and a diffuser. The main design objective of this VAD is to produce an axial pump with a streamlined, idealized, and nonobstructing blood flow path. The magnetic bearings are adapted so that the impeller is completely magnetically levitated. The VAD operates under transient conditions because of the spinning movement of the impeller and the pulsatile inlet flow rate. The design method, procedure, and iterations are presented. The VADs performance under transient conditions is investigated by means of computational fluid dynamics (CFD). Two reference frames, rotational and stationary, are implemented in the CFD simulations. The inlet and outlet surfaces of the impeller, which are connected to the inducer and diffuser respectively, are allowed to rotate and slide during the calculation to simulate the realistic spinning motion of the impeller. The flow head curves are determined, and the variation of pressure distribution during a cardiac cycle (including systole and diastole) is given. The axial oscillation of impeller is also estimated for the magnetic bearing design. The transient CFD simulation, which requires more computer resources and calculation efforts than the steady simulation, provides a range rather than only a point for the VADs performance. Because of pulsatile flow phenomena and virtual spinning movement of the impeller, the transient simulation, which is realistically correlated with the in vivo implant scenarios of a VAD, is essential to ensure an effective and reliable VAD design.


Reports on Progress in Physics | 2005

The medical physics of ventricular assist devices

Houston G. Wood; Amy L. Throckmorton; Alexandrina Untaroiu; Xinwei Song

Millions of patients, from infants to adults, are diagnosed with congestive heart failure each year all over the world. A limited number of donor hearts available for these patients results in a tremendous demand for alternative, supplemental circulatory support in the form of artificial heart pumps or ventricular assist devices (VADs). The development procedure for such a device requires careful consideration of biophysical factors, such as biocompatibility, haemolysis, thrombosis, implantability, physiologic control feasibility and pump performance. Conventional pump design equations based on Newtons law and computational fluid dynamics (CFD) are readily used for the initial design of VADs. In particular, CFD can be employed to predict the pressure-flow performance, hydraulic efficiencies, flow profile through the pump, stress levels and biophysical factors, such as possible blood cell damage. These computational flow simulations may involve comprehensive steady and transient flow analyses. The transient simulations involve time-varying boundary conditions and virtual modelling of the impeller rotation in the blood pumps. After prototype manufacture, laser flow measurements with sophisticated optics and mock circulatory flow loop testing assist with validation of pump design and identification of irregular flow patterns for optimization. Additionally, acute and chronic animal implants illustrate the blood pumps ability to support life physiologically. These extensive design techniques, coupled with fundamental principles of physics, ensure a reliable and effective VAD for thousands of heart failure patients each year.


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2010

Constrained Design Optimization of Rotor-Tilting Pad Bearing Systems

Costin D. Untaroiu; Alexandrina Untaroiu

Design of a rotor-bearing system is a challenging task due to various conflicting design requirements, which should be fulfilled. This study considers an automatic optimization approach for the design of a rotor supported on tilting-pad bearings. A numerical example of a rotor-bearing system is employed to demonstrate the merits of the proposed design approach. The finite element method is used to model the rotor-bearing system, and the dynamic speed-dependent coefficients of the bearing are calculated using a bulk flow code. A number of geometrical characteristics of the rotor simultaneously with the parameters defining the configuration of tilting pad bearings are considered as design variables into the automatic optimization process. The power loss in bearings, stability criteria, and unbalance responses are defined as a set of objective functions and constraints. The complex design optimization problem is solved using heuristic optimization algorithms, such as genetic, and particle-swarm optimization. Whereas both algorithms found better design solutions than the initial design, the genetic algorithms exhibited the fastest convergence. A statistical approach was used to identify the influence of the design variables on the objective function and constraint measures. The bearing clearances, preloads and lengths showed to have the highest influence on the power loss in the chosen design space. The high performance of the best solution obtained in the optimization design suggests that the proposed approach has good potential for improving design of rotor-bearing systems encountered in industrial applications.


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2012

Numerical Modeling of Fluid-Induced Rotordynamic Forces in Seals With Large Aspect Ratios

Alexandrina Untaroiu; Costin D. Untaroiu; Houston G. Wood; Paul E. Allaire

Traditional annular seal models are based on bulk flow theory. While these methods are computationally efficient and can predict dynamic properties fairly well for short seals, they lack accuracy in cases of seals with complex geometry or with large aspect ratios (above 1.0). In this paper, the linearized rotordynamic coefficients for a seal with a large aspect ratio are calculated by means of a three-dimensional CFD analysis performed to predict the fluid-induced forces acting on the rotor. For comparison, the dynamic coefficients were also calculated using two other codes: one developed on the bulk flow method and one based on finite difference method. These two sets of dynamic coefficients were compared with those obtained from CFD. Results show a reasonable correlation for the direct stiffness estimates, with largest value predicted by CFD. In terms of cross-coupled stiffness, which is known to be directly related to cross-coupled forces that contribute to rotor instability, the CFD also predicts the highest value; however, a much larger discrepancy can be observed for this term (73% higher than the value predicted by the finite difference method and 79% higher than the bulk flow code prediction). One can see similar large differences in predictions in the estimates for damping and direct mass coefficients, where the highest values are predicted by the bulk flow method. These large variations in damping and mass coefficients, and most importantly the large difference in the cross-coupled stiffness predictions, may be attributed to the large difference in seal geometry (i.e., the large aspect ratio AR >1.0 of this seal model versus the short seal configuration the bulk flow code is usually calibrated for using an empirical friction factor). [DOI: 10.1115/1.4007341]


Asaio Journal | 2008

CFD analysis of a Mag-Lev ventricular assist device for infants and children: fourth generation design.

Amy L. Throckmorton; Alexandrina Untaroiu

Thousands of pediatric patients suffering from heart failure would benefit from longer-term mechanical circulatory support. There are, however, few support systems available in the United States as viable mechanical assist alternatives for these patients. Therefore, we have designed and developed an axial flow pediatric ventricular assist device (PVAD) with an impeller that is fully suspended by magnetic bearings. This blood pump is designed to generate 0.5–4 L/min for pressure rises of 50–95 mm Hg over 6,000–9,000 rpm. We have performed four major design iterations. Building upon the third design phase, we made improvements to create the PVAD4 model. Numerical simulations of the PVAD4 under steady flow simulations were performed to compare the predictions of the latest PVAD4 model to the earlier PVAD3 design. The PVAD4 design resulted in lower fluid stress levels and an increase in pressure generation. A blood damage analysis was also completed. As compared with the earlier PVAD3 design, the damage analysis of the PVAD4 indicated a reduction in the mean and maximum damage index for the new design. All of these numerical findings are encouraging and demonstrate progress toward achieving a superior pump design.


Asaio Journal | 2005

The status of failure and reliability testing of artificial blood pumps.

Sonna M. Patel; Amy L. Throckmorton; Alexandrina Untaroiu; Paul E. Allaire; Houston G. Wood; Don B. Olsen

Artificial blood pumps are today’s most promising bridge-to-transplant, bridge-to-recovery, and destination therapy solutions for patients with congestive heart failure. There is a critical need for increased reliability and safety as the next generation of artificial blood pumps approach final development for long-term destination therapy. To date, extensive failure and reliability studies of these devices are considered intellectual property and thus remain unpublished. Presently, the Novacor N100PC, Thoratec VAD, and HeartMate LVAS (IP and XVE) comprise the only four artificial blood pumps commercially available for the treatment of congestive heart failure in the United States. The CardioWest TAH recently received premarket approval from the US Food and Drug Administration. With investigational device exemptions, the AB-180, AbioCor, LionHeart, DeBakey, and Flowmaker are approved for clinical testing. Other blood pumps, such as the American BioMed-Baylor TAH, CorAide, Cleveland Clinic-Nimbus TAH, HeartMate III, Hemadyne, and MagScrew TAH are currently in various stages of mock loop and animal testing, as indicated in published literature. This article extensively reviews in vitro testing, in vivo testing, and the early clinical testing of artificial blood pumps in the United States, as it relates to failure and reliability. This detailed literature review has not been published before and provides a thorough documentation of available data and testing procedures regarding failure and reliability of these various pumps.


Journal of Tribology-transactions of The Asme | 2012

A Computational Fluid Dynamics/Bulk-Flow Hybrid Method for Determining Rotordynamic Coefficients of Annular Gas Seals

Patrick J. Migliorini; Alexandrina Untaroiu; Houston G. Wood; Paul E. Allaire

This paper presents a new computational fluid dynamics (CFD)/bulk-flow hybrid method to determine the rotordynamic characteristics of annular gas seals. The method utilizes CFD analysis to evaluate the unperturbed base state flow, an averaging method to determine the base state bulk-flow variables, and a bulk-flow perturbation method to solve for the fluid forces acting on an eccentric, whirling rotor. In this study the hybrid method is applied to a hole-pattern seal geometry and compared with experimental data and numerical and analytical methods. The results of this study show that the dynamic coefficients predicted by the hybrid method agree well with the experimental data, producing results that are comparable with a full, three-dimensional, transient, whirling rotor CFD method. Additionally, the leakage rate predicted by the hybrid method is more agreeable with experiment than the other methods. The benefit of the present method is the ability to calculate accurate rotordynamic characteristics of annular seals that are comparable to results produced by full, transient CFD analyses with a simulation time on the order of bulk-flow analyses.


Journal of Fluids Engineering-transactions of The Asme | 2013

On the Dynamic Properties of Pump Liquid Seals

Alexandrina Untaroiu; Vahe Hayrapetian; Costin D. Untaroiu; Houston G. Wood; Bruno Schiavello; James McGuire

Rotordynamic instability due to fluid flow in seals is a well known phenomenon that can occur in pumps as well as in steam turbines and air compressors. While analysis methods using bulk-flow equations are computationally efficient and can predict dynamic properties fairly well for short seals, they often lack accuracy in cases of seals with complex geometry or with large aspect ratios (L/D above 1.0). This paper presents the linearized rotordynamic coefficients for a liquid seal with large aspect ratio subjected to incompressible turbulent flow. The fluid-induced forces acting on the rotor are calculated by means of a three-dimensional computational fluid dynamics (3D-CFD) analysis, and are then expressed in terms of equivalent linearized stiffness, damping, and fluid inertia coefficients. For comparison, the seal dynamic coefficients were calculated using two other codes: one developed with the bulk flow method and one based on the finite difference method. The three sets of dynamic coefficients calculated in this study were used then to predict the rotor dynamic behavior of an industrial pump. These estimations were then compared to the vibration characteristic measured during the pump shop test, results indicating that the closest agreement was achieved utilizing the CFD generated coefficients. The results of rotor dynamic analysis using the coefficients derived from CFD approach, improved the prediction of both damped natural frequency and damping factor for the first mode, showing substantially smaller damping factor which is consistent with the experimentally observed instability of the rotor-bearing system. As result of continuously increasing computational power, it is believed that the CFD approach for calculating fluid excitation forces will become the standard in industry. [DOI: 10.1115/1.4023653]


International Journal of Numerical Methods for Heat & Fluid Flow | 2016

Study on reconstruction and prediction methods of pressure field on blade surfaces for oil-filling process in a hydrodynamic retarder

Hongbin Mu; Wei Wei; Alexandrina Untaroiu; Qingdong Yan

Purpose – Traditional three-dimensional numerical methods require a long time for transient computational fluid dynamics simulation on oil-filling process of hydrodynamic braking. The purpose of this paper is to investigate reconstruction and prediction methods for the pressure field on blade surfaces to explore an accurate and rapid numerical method to solve transient internal flow in a hydrodynamic retarder. Design/methodology/approach – Dynamic braking performance for the oil-filling process was simulated and validated using experimental results. With the proper orthogonal decomposition (POD) method, the dominant modes of transient pressure distribution on blades were extracted using their spatio-temporal structural features from the knowledge of computed flow data. Pressure field on blades was reconstructed. Based on the approximate model (AM), transient pressure field on blades was predicted in combination with POD. The causes of reconstruction and prediction error were, respectively, analyzed. Findi...


ASME 2008 International Mechanical Engineering Congress and Exposition | 2008

Computational Modeling and Experimental Investigation of Static Straight-Through Labyrinth Seals

Alexandrina Untaroiu; Christopher P. Goyne; Costin D. Untaroiu; Houston G. Wood; Robert D. Rockwell; Paul E. Allaire

To design highly efficient and stable turbomachines, engineers require accurate methods to model seal flows and calculate clearance-excitation forces generated by the eccentric position of the rotor. One of the most widely used methods to predict leakage flow and dynamic coefficients is the use of computer codes developed based on bulk flow theory. In recent years, computational fluid dynamics (CFD) modeling is increasingly being recognized as an accurate assessment tool for flow parameters and dynamic coefficients evaluation as compared to the bulk flow codes. This paper presents computational and experimental investigations that were carried out to calculate flow parameters in a stationary straight-through model labyrinth seal. The main objective of this study is to explore the capabilities of Ansys-CFX, a commercially available state of the art 3D numerical code, to accurately model compressible flow through the seals. The flow behavior is analyzed using CFD and the flow parameters calculated by CFD are validated against experimental data taken for the same seal configuration. The integrated values of leakage flow rates estimated from the computational results agree with the experimental data within 7.6%. This study serves as a benchmark case that supports further efforts in applying CFD analysis in conjunction with automatic design optimization techniques for seals used for compressible media. It was shown that optimization algorithms combined with CFD simulations have good potential for improving seal design.Copyright

Collaboration


Dive into the Alexandrina Untaroiu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge