Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandrine M. Bilwes is active.

Publication


Featured researches published by Alexandrine M. Bilwes.


Science | 2007

Conformational Switching in the Fungal Light Sensor Vivid

Brian D. Zoltowski; Carsten Schwerdtfeger; Joanne Widom; Jennifer J. Loros; Alexandrine M. Bilwes; Jay C. Dunlap; Brian R. Crane

The Neurospora crassa photoreceptor Vivid tunes blue-light responses and modulates gating of the circadian clock. Crystal structures of dark-state and light-state Vivid reveal a light, oxygen, or voltage Per-Arnt-Sim domain with an unusual N-terminal cap region and a loop insertion that accommodates the flavin cofactor. Photoinduced formation of a cystein-flavin adduct drives flavin protonation to induce an N-terminal conformational change. A cysteine-to-serine substitution remote from the flavin adenine dinucleotide binding site decouples conformational switching from the flavin photocycle and prevents Vivid from sending signals in Neurospora. Key elements of this activation mechanism are conserved by other photosensors such as White Collar-1, ZEITLUPE, ENVOY, and flavin-binding, kelch repeat, F-BOX 1 (FKF1).


Nature Structural & Molecular Biology | 2006

Reconstruction of the chemotaxis receptor-kinase assembly.

Sang-Youn Park; Peter P. Borbat; Gabriela Gonzalez-Bonet; Jaya Bhatnagar; Abiola M. Pollard; Jack H. Freed; Alexandrine M. Bilwes; Brian R. Crane

In bacterial chemotaxis, an assembly of transmembrane receptors, the CheA histidine kinase and the adaptor protein CheW processes environmental stimuli to regulate motility. The structure of a Thermotoga maritima receptor cytoplasmic domain defines CheA interaction regions and metal ion–coordinating charge centers that undergo chemical modification to tune receptor response. Dimeric CheA–CheW, defined by crystallography and pulsed ESR, positions two CheWs to form a cleft that is lined with residues important for receptor interactions and sized to clamp one receptor dimer. CheW residues involved in kinase activation map to interfaces that orient the CheW clamps. CheA regulatory domains associate in crystals through conserved hydrophobic surfaces. Such CheA self-contacts align the CheW receptor clamps for binding receptor tips. Linking layers of ternary complexes with close-packed receptors generates a lattice with reasonable component ratios, cooperative interactions among receptors and accessible sites for modification enzymes.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins

Ariane Briegel; Xiaoxiao Li; Alexandrine M. Bilwes; Kelly T. Hughes; Grant J. Jensen; Brian R. Crane

Chemoreceptor arrays are supramolecular transmembrane machines of unknown structure that allow bacteria to sense their surroundings and respond by chemotaxis. We have combined X-ray crystallography of purified proteins with electron cryotomography of native arrays inside cells to reveal the arrangement of the component transmembrane receptors, histidine kinases (CheA) and CheW coupling proteins. Trimers of receptor dimers lie at the vertices of a hexagonal lattice in a “two-facing-two” configuration surrounding a ring of alternating CheA regulatory domains (P5) and CheW couplers. Whereas the CheA kinase domains (P4) project downward below the ring, the CheA dimerization domains (P3) link neighboring rings to form an extended, stable array. This highly interconnected protein architecture underlies the remarkable sensitivity and cooperative nature of transmembrane signaling in bacterial chemotaxis.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Cloning, expression, and characterization of a nitric oxide synthase protein from Deinococcus radiodurans

Subrata Adak; Alexandrine M. Bilwes; Koustubh Panda; David J. Hosfield; Kulwant S. Aulak; John F. McDonald; John A. Tainer; Elizabeth D. Getzoff; Brian R. Crane; Dennis J. Stuehr

We cloned, expressed, and characterized a hemeprotein from Deinococcus radiodurans (D. radiodurans NO synthase, deiNOS) whose sequence is 34% identical to the oxygenase domain of mammalian NO synthases (NOSoxys). deiNOS was dimeric, bound substrate Arg and cofactor tetrahydrobiopterin, and had a normal heme environment, despite its missing N-terminal structures that in NOSoxy bind Zn2+ and tetrahydrobiopterin and help form an active dimer. The deiNOS heme accepted electrons from a mammalian NOS reductase and generated NO at rates that met or exceeded NOSoxy. Activity required bound tetrahydrobiopterin or tetrahydrofolate and was linked to formation and disappearance of a typical heme-dioxy catalytic intermediate. Thus, bacterial NOS-like proteins are surprisingly similar to mammalian NOSs and broaden our perspective of NO biochemistry and function.


Structure | 2010

Structure of Concatenated HAMP Domains Provides a Mechanism for Signal Transduction

Michael V. Airola; Kylie J. Watts; Alexandrine M. Bilwes; Brian R. Crane

HAMP domains are widespread prokaryotic signaling modules found as single domains or poly-HAMP chains in both transmembrane and soluble proteins. The crystal structure of a three-unit poly-HAMP chain from the Pseudomonas aeruginosa soluble receptor Aer2 defines a universal parallel four-helix bundle architecture for diverse HAMP domains. Two contiguous domains integrate to form a concatenated di-HAMP structure. The three HAMP domains display two distinct conformations that differ by changes in helical register, crossing angle, and rotation. These conformations are stabilized by different subsets of conserved residues. Known signals delivered to HAMP would be expected to switch the relative stability of the two conformations and the position of a coiled-coil phase stutter at the junction with downstream helices. We propose that the two conformations represent opposing HAMP signaling states and suggest a signaling mechanism whereby HAMP domains interconvert between the two states, which alternate down a poly-HAMP chain.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Structure of FliM provides insight into assembly of the switch complex in the bacterial flagella motor

Sang Youn Park; Biyan Lowder; Alexandrine M. Bilwes; David Blair; Brian R. Crane

Bacteria switch the direction their flagella rotate to control movement. FliM, along with FliN and FliG, compose a complex in the motor that, upon binding phosphorylated CheY, reverses the sense of flagellar rotation. The 2.0-Å resolution structure of the FliM middle domain (FliMM) from Thermotoga maritima reveals a pseudo-2-fold symmetric topology similar to the CheY phosphatases CheC and CheX. A variable structural element, which, in CheC, mediates binding to CheD (α2′) and, in CheX, mediates dimerization (β′x), has a truncated structure unique to FliM (α2′). An exposed helix of FliMM (α1) does not contain the catalytic residues of CheC and CheX but does include positions conserved in FliM sequences. Cross-linking experiments with site-directed cysteine mutants show that FliM self-associates through residues on α1 and α2′. CheY activated by BeF3− binds to FliM with ≈40-fold higher affinity than CheY (Kd = 0.04 μM vs. 2 μM). Mapping residue conservation, suppressor mutation sites, binding data, and deletion analysis onto the FliMM surface defines regions important for contacts with the stator-interacting protein FliG and for either counterclockwise or clockwise rotation. Association of 33–35 FliM subunits would generate a 44- to 45-nm-diameter disk, consistent with the known dimensions of the C-ring. The localization of counterclockwise- and clockwise-biasing mutations to distinct surfaces suggests that the binding of phosphorylated CheY cooperatively realigns FliM around the ring.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Probing the open state of cytochrome P450cam with ruthenium-linker substrates.

Alexander R. Dunn; Ivan J. Dmochowski; Alexandrine M. Bilwes; Harry B. Gray; Brian R. Crane

Cytochromes P450 play key roles in drug metabolism and disease by oxidizing a wide variety of natural and xenobiotic compounds. High-resolution crystal structures of P450cam bound to ruthenium sensitizer-linked substrates reveal an open conformation of the enzyme that allows substrates to access the active center via a 22-Å deep channel. Interactions of alkyl and fluorinated biphenyl linkers with the channel demonstrate the importance of exploiting protein dynamics for specific inhibitor design. Large changes in peripheral enzyme structure (F and G helices) couple to conformational changes in active center residues (I helix) implicated in proton pumping and dioxygen activation. Common conformational states among P450cam and homologous enzymes indicate that static and dynamic variability in the F/G helix region allows the 54 human P450s to oxidize thousands of substrates.


Biochemistry | 2010

Structure of the ternary complex formed by a chemotaxis receptor signaling domain, the CheA histidine kinase, and the coupling protein CheW as determined by pulsed dipolar ESR spectroscopy.

Jaya Bhatnagar; Peter P. Borbat; Abiola M. Pollard; Alexandrine M. Bilwes; Jack H. Freed; Brian R. Crane

The signaling apparatus that controls bacterial chemotaxis is composed of a core complex containing chemoreceptors, the histidine autokinase CheA, and the coupling protein CheW. Site-specific spin labeling and pulsed dipolar ESR spectroscopy (PDS) have been applied to investigate the structure of a soluble ternary complex formed by Thermotoga maritima CheA (TmCheA), CheW, and receptor signaling domains. Thirty-five symmetric spin-label sites (SLSs) were engineered into the five domains of the CheA dimer and CheW to provide distance restraints within the CheA:CheW complex in the absence and presence of a soluble receptor that inhibits kinase activity (Tm14). Additional PDS restraints among spin-labeled CheA, CheW, and an engineered single-chain receptor labeled at six different sites allow docking of the receptor structure relative to the CheA:CheW complex. Disulfide cross-linking between selectively incorporated Cys residues finds two pairs of positions that provide further constraints within the ternary complex: one involving Tm14 and CheW and another involving Tm14 and CheA. The derived structure of the ternary complex indicates a primary site of interaction between CheW and Tm14 that agrees well with previous biochemical and genetic data for transmembrane chemoreceptors. The PDS distance distributions are most consistent with only one CheW directly engaging one dimeric Tm14. The CheA dimerization domain (P3) aligns roughly antiparallel to the receptor-conserved signaling tip but does not interact strongly with it. The angle of the receptor axis with respect to P3 and the CheW-binding P5 domains is bound by two limits differing by approximately 20 degrees . In one limit, Tm14 aligns roughly along P3 and may interact to some extent with the hinge region near the P3 hairpin loop. In the other limit, Tm14 tilts to interact with the P5 domain of the opposite subunit in an interface that mimics that observed with the P5 homologue CheW. The time domain ESR data can be simulated from the model only if orientational variability is introduced for the P5 and, especially, P3 domains. The Tm14 tip also binds beside one of the CheA kinase domains (P4); however, in both bound and unbound states, P4 samples a broad range of distributions that are only minimally affected by Tm14 binding. The CheA P1 domains that contain the substrate histidine are also broadly distributed in space under all conditions. In the context of the hexagonal lattice formed by trimeric transmembrane chemoreceptors, the PDS structure is best accommodated with the P3 domain in the center of a honeycomb edge.


Cell | 2006

A receptor-modifying deamidase in complex with a signaling phosphatase reveals reciprocal regulation

Xingjuan Chao; Travis J. Muff; Sang Youn Park; Sheng Zhang; Abiola M. Pollard; George W. Ordal; Alexandrine M. Bilwes; Brian R. Crane

Signal transduction underlying bacterial chemotaxis involves excitatory phosphorylation and feedback control through deamidation and methylation of sensory receptors. The structure of a complex between the signal-terminating phosphatase, CheC, and the receptor-modifying deamidase, CheD, reveals how CheC mimics receptor substrates to inhibit CheD and how CheD stimulates CheC phosphatase activity. CheD resembles other cysteine deamidases from bacterial pathogens that inactivate host Rho-GTPases. CheD not only deamidates receptor glutamine residues contained within a conserved structural motif but also hydrolyzes glutamyl-methyl-esters at select regulatory positions. Substituting Gln into the receptor motif of CheC turns the inhibitor into a CheD substrate. Phospho-CheY, the intracellular signal and CheC target, stabilizes the CheC:CheD complex and reduces availability of CheD. A point mutation that dissociates CheC from CheD impairs chemotaxis in vivo. Thus, CheC incorporates an element of an upstream receptor to influence both its own effect on receptor output and that of its binding partner, CheD.


The EMBO Journal | 2011

Architecture of the flagellar rotor

Gabriela Gonzalez-Bonet; Alexandrine M. Bilwes; Brian R. Crane; David F. Blair

Rotation and switching of the bacterial flagellum depends on a large rotor‐mounted protein assembly composed of the proteins FliG, FliM and FliN, with FliG most directly involved in rotation. The crystal structure of a complex between the central domains of FliG and FliM, in conjunction with several biochemical and molecular‐genetic experiments, reveals the arrangement of the FliG and FliM proteins in the rotor. A stoichiometric mismatch between FliG (26 subunits) and FliM (34 subunits) is explained in terms of two distinct positions for FliM: one where it binds the FliG central domain and another where it binds the FliG C‐terminal domain. This architecture provides a structural framework for addressing the mechanisms of motor rotation and direction switching and for unifying the large body of data on motor performance. Recently proposed alternative models of rotor assembly, based on a subunit contact observed in crystals, are not supported by experiment.

Collaboration


Dive into the Alexandrine M. Bilwes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph P. Noel

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Tony Hunter

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melvin I. Simon

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cindy M. Quezada

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge