Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexei A. Aravin is active.

Publication


Featured researches published by Alexei A. Aravin.


Cell | 2007

A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing

Pablo Landgraf; Mirabela Rusu; Robert L. Sheridan; Alain Sewer; Nicola Iovino; Alexei A. Aravin; Sébastien Pfeffer; Amanda Rice; Alice O. Kamphorst; Markus Landthaler; Carolina Lin; Nicholas D. Socci; Leandro C. Hermida; Valerio Fulci; Sabina Chiaretti; Robin Foà; Julia Schliwka; Uta Fuchs; Astrid Novosel; Roman Ulrich Müller; Bernhard Schermer; Ute Bissels; Jason M. Inman; Quang Phan; Minchen Chien; David B. Weir; Ruchi Choksi; Gabriella De Vita; Daniela Frezzetti; Hans Ingo Trompeter

MicroRNAs (miRNAs) are small noncoding regulatory RNAs that reduce stability and/or translation of fully or partially sequence-complementary target mRNAs. In order to identify miRNAs and to assess their expression patterns, we sequenced over 250 small RNA libraries from 26 different organ systems and cell types of human and rodents that were enriched in neuronal as well as normal and malignant hematopoietic cells and tissues. We present expression profiles derived from clone count data and provide computational tools for their analysis. Unexpectedly, a relatively small set of miRNAs, many of which are ubiquitously expressed, account for most of the differences in miRNA profiles between cell lineages and tissues. This broad survey also provides detailed and accurate information about mature sequences, precursors, genome locations, maturation processes, inferred transcriptional units, and conservation patterns. We also propose a subclassification scheme for miRNAs for assisting future experimental and computational functional analyses.


Nature | 2006

A novel class of small RNAs bind to MILI protein in mouse testes.

Alexei A. Aravin; Dimos Gaidatzis; Sébastien Pfeffer; Mariana Lagos-Quintana; Pablo Landgraf; Nicola Iovino; Patricia L. Morris; Michael J. Brownstein; Satomi Kuramochi-Miyagawa; Toru Nakano; Minchen Chien; James J. Russo; Jingyue Ju; Robert L. Sheridan; Chris Sander; Mihaela Zavolan; Thomas Tuschl

Small RNAs bound to Argonaute proteins recognize partially or fully complementary nucleic acid targets in diverse gene-silencing processes. A subgroup of the Argonaute proteins—known as the ‘Piwi family’—is required for germ- and stem-cell development in invertebrates, and two Piwi members—MILI and MIWI—are essential for spermatogenesis in mouse. Here we describe a new class of small RNAs that bind to MILI in mouse male germ cells, where they accumulate at the onset of meiosis. The sequences of the over 1,000 identified unique molecules share a strong preference for a 5′ uridine, but otherwise cannot be readily classified into sequence families. Genomic mapping of these small RNAs reveals a limited number of clusters, suggesting that these RNAs are processed from long primary transcripts. The small RNAs are 26–31 nucleotides (nt) in length—clearly distinct from the 21–23 nt of microRNAs (miRNAs) or short interfering RNAs (siRNAs)—and we refer to them as ‘Piwi-interacting RNAs’ or piRNAs. Orthologous human chromosomal regions also give rise to small RNAs with the characteristics of piRNAs, but the cloned sequences are distinct. The identification of this new class of small RNAs provides an important starting point to determine the molecular function of Piwi proteins in mammalian spermatogenesis.


Nature | 2008

Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes

Oliver H. Tam; Alexei A. Aravin; Paula Stein; Angélique Girard; Elizabeth P. Murchison; Sihem Cheloufi; Emily Hodges; Martin Anger; Ravi Sachidanandam; Richard M. Schultz; Gregory J. Hannon

Pseudogenes populate the mammalian genome as remnants of artefactual incorporation of coding messenger RNAs into transposon pathways. Here we show that a subset of pseudogenes generates endogenous small interfering RNAs (endo-siRNAs) in mouse oocytes. These endo-siRNAs are often processed from double-stranded RNAs formed by hybridization of spliced transcripts from protein-coding genes to antisense transcripts from homologous pseudogenes. An inverted repeat pseudogene can also generate abundant small RNAs directly. A second class of endo-siRNAs may enforce repression of mobile genetic elements, acting together with Piwi-interacting RNAs. Loss of Dicer, a protein integral to small RNA production, increases expression of endo-siRNA targets, demonstrating their regulatory activity. Our findings indicate a function for pseudogenes in regulating gene expression by means of the RNA interference pathway and may, in part, explain the evolutionary pressure to conserve argonaute-mediated catalysis in mammals.


Developmental Cell | 2003

The small RNA profile during Drosophila melanogaster development

Alexei A. Aravin; Mariana Lagos-Quintana; Abdullah Yalcin; Mihaela Zavolan; Debora Marks; Ben Snyder; Terry Gaasterland; Jutta Meyer; Thomas Tuschl

Small RNAs ranging in size between 20 and 30 nucleotides are involved in different types of regulation of gene expression including mRNA degradation, translational repression, and chromatin modification. Here we describe the small RNA profile of Drosophila melanogaster as a function of development. We have cloned and sequenced over 4000 small RNAs, 560 of which have the characteristics of RNase III cleavage products. A nonredundant set of 62 miRNAs was identified. We also isolated 178 repeat-associated small interfering RNAs (rasiRNAs), which are cognate to transposable elements, satellite and microsatellite DNA, and Suppressor of Stellate repeats, suggesting that small RNAs participate in defining chromatin structure. rasiRNAs are most abundant in testes and early embryos, where regulation of transposon activity is critical and dramatic changes in heterochromatin structure occur.


Molecular Cell | 2008

A piRNA Pathway Primed by Individual Transposons Is Linked to De Novo DNA Methylation in Mice

Alexei A. Aravin; Ravi Sachidanandam; Déborah Bourc'his; Christopher Schaefer; Dubravka Pezic; Katalin Fejes Tóth; Timothy H. Bestor; Gregory J. Hannon

piRNAs and Piwi proteins have been implicated in transposon control and are linked to transposon methylation in mammals. Here we examined the construction of the piRNA system in the restricted developmental window in which methylation patterns are set during mammalian embryogenesis. We find robust expression of two Piwi family proteins, MIWI2 and MILI. Their associated piRNA profiles reveal differences from Drosophila wherein large piRNA clusters act as master regulators of silencing. Instead, in mammals, dispersed transposon copies initiate the pathway, producing primary piRNAs, which predominantly join MILI in the cytoplasm. MIWI2, whose nuclear localization and association with piRNAs depend upon MILI, is enriched for secondary piRNAs antisense to the elements that it controls. The Piwi pathway lies upstream of known mediators of DNA methylation, since piRNAs are still produced in dnmt3L mutants, which fail to methylate transposons. This implicates piRNAs as specificity determinants of DNA methylation in germ cells.


Nucleic Acids Research | 2005

Clustering and conservation patterns of human microRNAs

Yael Altuvia; Pablo Landgraf; Gila Lithwick; Naama Elefant; Sébastien Pfeffer; Alexei A. Aravin; Michael J. Brownstein; Thomas Tuschl; Hanah Margalit

MicroRNAs (miRNAs) are ∼22 nt-long non-coding RNA molecules, believed to play important roles in gene regulation. We present a comprehensive analysis of the conservation and clustering patterns of known miRNAs in human. We show that human miRNA gene clustering is significantly higher than expected at random. A total of 37% of the known human miRNA genes analyzed in this study appear in clusters of two or more with pairwise chromosomal distances of at most 3000 nt. Comparison of the miRNA sequences with their homologs in four other organisms reveals a typical conservation pattern, persistent throughout the clusters. Furthermore, we show enrichment in the typical conservation patterns and other miRNA-like properties in the vicinity of known miRNA genes, compared with random genomic regions. This may imply that additional, yet unknown, miRNAs reside in these regions, consistent with the current recognition that there are overlooked miRNAs. Indeed, by comparing our predictions with cloning results and with identified miRNA genes in other mammals, we corroborate the predictions of 18 additional human miRNA genes in the vicinity of the previously known ones. Our study raises the proportion of clustered human miRNAs that are <3000 nt apart to 42%. This suggests that the clustering of miRNA genes is higher than currently acknowledged, alluding to its evolutionary and functional implications.


Science | 2008

An epigenetic role for maternally inherited piRNAs in transposon silencing

Julius Brennecke; Colin D. Malone; Alexei A. Aravin; Ravi Sachidanandam; Alexander Stark; Gregory J. Hannon

In plants and mammals, small RNAs indirectly mediate epigenetic inheritance by specifying cytosine methylation. We found that small RNAs themselves serve as vectors for epigenetic information. Crosses between Drosophila strains that differ in the presence of a particular transposon can produce sterile progeny, a phenomenon called hybrid dysgenesis. This phenotype manifests itself only if the transposon is paternally inherited, suggesting maternal transmission of a factor that maintains fertility. In both P- and I-element–mediated hybrid dysgenesis models, daughters show a markedly different content of Piwi-interacting RNAs (piRNAs) targeting each element, depending on their parents of origin. Such differences persist from fertilization through adulthood. This indicates that maternally deposited piRNAs are important for mounting an effective silencing response and that a lack of maternal piRNA inheritance underlies hybrid dysgenesis.


BMC Bioinformatics | 2005

Identification of clustered microRNAs using an ab initio prediction method

Alain Sewer; Nicodeme Paul; Pablo Landgraf; Alexei A. Aravin; Sébastien Pfeffer; Michael J. Brownstein; Thomas Tuschl; Erik van Nimwegen; Mihaela Zavolan

BackgroundMicroRNAs (miRNAs) are endogenous 21 to 23-nucleotide RNA molecules that regulate protein-coding gene expression in plants and animals via the RNA interference pathway. Hundreds of them have been identified in the last five years and very recent works indicate that their total number is still larger. Therefore miRNAs gene discovery remains an important aspect of understanding this new and still widely unknown regulation mechanism. Bioinformatics approaches have proved to be very useful toward this goal by guiding the experimental investigations.ResultsIn this work we describe our computational method for miRNA prediction and the results of its application to the discovery of novel mammalian miRNAs. We focus on genomic regions around already known miRNAs, in order to exploit the property that miRNAs are occasionally found in clusters. Starting with the known human, mouse and rat miRNAs we analyze 20 kb of flanking genomic regions for the presence of putative precursor miRNAs (pre-miRNAs). Each genome is analyzed separately, allowing us to study the species-specific identity and genome organization of miRNA loci. We only use cross-species comparisons to make conservative estimates of the number of novel miRNAs. Our ab initio method predicts between fifty and hundred novel pre-miRNAs for each of the considered species. Around 30% of these already have experimental support in a large set of cloned mammalian small RNAs. The validation rate among predicted cases that are conserved in at least one other species is higher, about 60%, and many of them have not been detected by prediction methods that used cross-species comparisons. A large fraction of the experimentally confirmed predictions correspond to an imprinted locus residing on chromosome 14 in human, 12 in mouse and 6 in rat. Our computational tool can be accessed on the world-wide-web.ConclusionOur results show that the assumption that many miRNAs occur in clusters is fruitful for the discovery of novel miRNAs. Additionally we show that although the overall miRNA content in the observed clusters is very similar across the three considered species, the internal organization of the clusters changes in evolution.


Genes & Development | 2009

Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members

Vasily V. Vagin; James A. Wohlschlegel; Jun Qu; Zophonias O. Jonsson; Xinhua Huang; Shinichiro Chuma; Angélique Girard; Ravi Sachidanandam; Gregory J. Hannon; Alexei A. Aravin

In germ cells, Piwi proteins interact with a specific class of small noncoding RNAs, piwi-interacting RNAs (piRNAs). Together, these form a pathway that represses transposable elements, thus safeguarding germ cell genomes. Basic models describe the overall operation of piRNA pathways. However, the protein compositions of Piwi complexes, the critical protein-protein interactions that drive small RNA production and target recognition, and the precise molecular consequences of conserved localization to germline structures, call nuage, remains poorly understood. We purified the three murine Piwi family proteins, MILI, MIWI, and MIWI2, from mouse germ cells and characterized their interacting protein partners. Piwi proteins were found in complex with PRMT5/WDR77, an enzyme that dimethylates arginine residues. By immunoprecipitation with specific antibodies and by mass spectrometry, we found that Piwi proteins are arginine methylated at conserved positions in their N termini. These modifications are essential to direct complex formation with specific members of the Tudor protein family. Recognition of methylarginine marks by Tudor proteins can drive the localization of Piwi proteins to cytoplasmic foci in an artificial setting, supporting a role for this interaction in Piwi localization to nuage, a characteristic that correlates with proper operation of the piRNA pathway and transposon silencing in multiple organisms.


FEBS Letters | 2005

Identification and characterization of small RNAs involved in RNA silencing

Alexei A. Aravin; Thomas Tuschl

Double‐stranded RNA (dsRNA) is a potent trigger of sequence‐specific gene silencing mechanisms known as RNA silencing or RNA interference. The recognition of the target sequences is mediated by ribonucleoprotein complexes that contain 21‐ to 28‐nucleotide (nt) guide RNAs derived from processing of the trigger dsRNA. Here, we review the experimental and bioinformatic approaches that were used to identify and characterize these small RNAs isolated from cells and tissues. The identification and characterization of small RNAs and their expression patterns is important for elucidating gene regulatory networks.

Collaboration


Dive into the Alexei A. Aravin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ravi Sachidanandam

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pablo Landgraf

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Galina L. Kogan

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael J. Brownstein

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Julius Brennecke

Austrian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge