Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexei Preobrajenski is active.

Publication


Featured researches published by Alexei Preobrajenski.


Nano Letters | 2011

Nitrogen-Doped Graphene: Efficient Growth, Structure, and Electronic Properties

D. Usachov; Oleg Yu. Vilkov; A. Grüneis; Danny Haberer; A. V. Fedorov; V. K. Adamchuk; Alexei Preobrajenski; Pavel Dudin; Alexei Barinov; M. Oehzelt; C. Laubschat; D. V. Vyalikh

A novel strategy for efficient growth of nitrogen-doped graphene (N-graphene) on a large scale from s-triazine molecules is presented. The growth process has been unveiled in situ using time-dependent photoemission. It has been established that a postannealing of N-graphene after gold intercalation causes a conversion of the N environment from pyridinic to graphitic, allowing to obtain more than 80% of all embedded nitrogen in graphitic form, which is essential for the electron doping in graphene. A band gap, a doping level of 300 meV, and a charge-carrier concentration of ∼8×10(12) electrons per cm2, induced by 0.4 atom % of graphitic nitrogen, have been detected by angle-resolved photoemission spectroscopy, which offers great promise for implementation of this system in next generation electronic devices.


Nano Letters | 2010

Graphene Synthesis on Cubic SiC/Si Wafers. Perspectives for Mass Production of Graphene-Based Electronic Devices

Victor Yu. Aristov; Grzegorz Urbanik; Kurt Kummer; D. V. Vyalikh; O. V. Molodtsova; Alexei Preobrajenski; Alexei Zakharov; Christian Hess; Torben Hänke; Bernd Büchner; I. Vobornik; J. Fujii; G. Panaccione; Yuri A. Ossipyan; M. Knupfer

The outstanding properties of graphene, a single graphite layer, render it a top candidate for substituting silicon in future electronic devices. The so far exploited synthesis approaches, however, require conditions typically achieved in specialized laboratories and result in graphene sheets whose electronic properties are often altered by interactions with substrate materials. The development of graphene-based technologies requires an economical fabrication method compatible with mass production. Here we demonstrate for the fist time the feasibility of graphene synthesis on commercially available cubic SiC/Si substrates of >300 mm in diameter, which result in graphene flakes electronically decoupled from the substrate. After optimization of the preparation procedure, the proposed synthesis method can represent a further big step toward graphene-based electronic technologies.


Applied Physics Letters | 2010

Induced magnetism of carbon atoms at the graphene/Ni(111) interface

Martin Weser; Y. Rehder; Karsten Horn; Muriel Sicot; Mikhail Fonin; Alexei Preobrajenski; Elena Voloshina; E. Goering; Yuriy S. Dedkov

We report an element-specific investigation of electronic and magnetic properties of the graphene/Ni(111) system. Using x-ray magnetic circular dichroism, the occurrence of an induced magnetism of the carbon atoms in the graphene layer is observed. We attribute this magnetic moment to the strong hybridization between C π and Ni 3d valence band states. The net magnetic moment of carbon in the graphene layer is estimated to be in the range of 0.05–0.1 μB per atom.


Physical Review B | 2010

Quasifreestanding single-layer hexagonal boron nitride as a substrate for graphene synthesis

D. Usachov; V. K. Adamchuk; Danny Haberer; A. Grueneis; Hermann Sachdev; Alexei Preobrajenski; C. Laubschat; D. V. Vyalikh

We demonstrate that freeing a single-atom thick layer of hexagonal boron nitride (h-BN) from tight chemical bonding to a Ni(111) thin film grown on a W(110) substrate can be achieved by intercalation of Au atoms into the interface. This process has been systematically investigated using angle-resolved photoemission spectroscopy, X-ray photoemission and absorption techniques. It has been demonstrated that the transition of the h-BN layer from the “rigid” into the “quasi-freestanding” state is accompanied by a change of its lattice constant. Using chemical vapor deposition, graphene has been successfully synthesized on the insulating, quasi-freestanding h-BN monolayer. We anticipate that the in situ synthesized weakly interacting graphene/h-BN double layered system could be further developed for technological applications and may provide perspectives for further inquiry into the unusual electronic properties of graphene.


Langmuir | 2012

One-Dimensional Corrugation of the h-BN Monolayer on Fe(110)

Nikolay A. Vinogradov; Alexei Zakharov; Anders Mikkelsen; Edvin Lundgren; Nils Mårtensson; Alexei Preobrajenski

We report on a new nanopatterned structure represented by a single atomic layer of hexagonal boron nitride (h-BN) forming long periodic waves on the Fe(110) surface. The growth process and the structure of this system are characterized by X-ray absorption (XAS), core-level photoemission spectroscopy (CL PES), low-energy electron microscopy (LEEM), microbeam low-energy electron diffraction (μLEED), and scanning tunneling microscopy (STM). The h-BN monolayer on Fe(110) is periodically corrugated in a wavy fashion with an astonishing degree of long-range order, periodicity of 2.6 nm, and the corrugation amplitude of ∼0.8 Å. The wavy pattern results from a strong chemical bonding between h-BN and Fe in combination with a lattice mismatch in either [111] or [111] direction of the Fe(110) surface. Two primary orientations of h-BN on Fe(110) can be observed corresponding to the possible directions of lattice match between h-BN and Fe(110), with approximately equal area of the boron nitride domains of each orientation.


Chemical Communications | 2011

Evidence for the formation of an intermediate complex in the direct metalation of tetra(4-bromophenyl)-porphyrin on the Cu(111) surface

Catherine M. Doyle; Sergey A. Krasnikov; Natalia N. Sergeeva; Alexei Preobrajenski; Nikolay A. Vinogradov; Yulia N. Sergeeva; Mathias O. Senge; Attilio A. Cafolla

A strong molecule-surface interaction between free-base-tetra(4-bromophenyl)-porphyrin and Cu(111) results in a distortion of both the molecule and the underlying copper surface in the vicinity of the molecule. This in turn leads to the formation of an intermediate complex due to bonding between the iminic nitrogens and surface copper atoms.


Journal of Physics: Condensed Matter | 2012

Controllable p-doping of graphene on Ir(111) by chlorination with FeCl3

Nikolay Vinogradov; K. A. Simonov; A V Generalov; A. S. Vinogradov; D. V. Vyalikh; C. Laubschat; Nils Mårtensson; Alexei Preobrajenski

The in situ chlorination of graphene on Ir(111) has been achieved by depositing FeCl(3) followed by its thermal decomposition on the surface into FeCl(2) and Cl. This process is accompanied by an intercalation of Cl under graphene and formation of an epitaxial FeCl(2) film on top, which can be removed upon further annealing. A pronounced hole doping of graphene has been observed as a consequence of the annealing-assisted intercalation of Cl. This effect has been studied by a combination of core-level and angle-resolved photoelectron spectroscopies (CL PES and ARPES, respectively), near-edge x-ray absorption fine structure (NEXAFS) spectroscopy and low-energy electron diffraction (LEED). The ease of preparation, the remarkable reproducibility of the doping level and the reversibility of the doping upon annealing are the key factors making chlorination with FeCl(3) a promising route for tuning the electronic properties in graphene.


Nano Letters | 2009

Impact of Oxygen Coadsorption on Intercalation of Cobalt under the h-BN Nanomesh.

Alexei Preobrajenski; Nikolay Vinogradov; A. S. Vinogradov; Edvin Lundgren; Anders Mikkelsen; Nils Mårtensson

The process of penetration of cobalt atoms through the h-BN nanomesh on Rh(111) is investigated with both spectroscopic and microscopic techniques. It is discovered that oxygen coadsorption can drastically modify the physical properties and behavior of the deposited Co clusters upon postannealing. In the absence of oxygen, Co forms small nanoparticles in the pores (bonding parts) of the h-BN nanomesh, which start to agglomerate at elevated temperatures without any considerable intercalation. However, even a tiny amount of coadsorbed oxygen reduces cobalt agglomeration and greatly promotes its intercalation and trapping under h-BN. The oxygen exposure necessary for a complete intercalation of 1-2 monolayers of Co is very low, and the formation of oxidic species can be easily avoided. The nanomesh structure remains intact upon intercalating submonolayer amounts of Co, while further intercalation gradually distorts and finally destroys the periodic corrugation. Fortunately, this process is not accompanied by damaging the h-BN sheet itself, and the original structure can be restored by removing Co upon annealing at higher temperatures.


Journal of Physical Chemistry B | 2010

Electronic Structure of Genomic DNA: A Photoemission and X-ray Absorption Study

Kurt Kummer; D. V. Vyalikh; G. Gavrila; Alexei Preobrajenski; Alfred Kick; Martin Bönsch; Michael Mertig; S. L. Molodtsov

The electronic structure of genomic DNA has been comprehensively characterized by synchrotron-based X-ray absorption and X-ray photoelectron spectroscopy. Both unoccupied and occupied states close to the Fermi level have been unveiled and attributed to particular sites within the DNA structure. A semiconductor-like electronic structure with a band gap of approximately 2.6 eV has been found at which the pi and pi* orbitals of the nucleobase stack make major contributions to the highest occupied and lowest unoccupied molecular orbitals, respectively, in agreement with previous theoretical predictions.


Chemical Communications | 2014

Ni–Cu ion exchange observed for Ni(II)–porphyrins on Cu(111)

Catherine M. Doyle; John P. Cunniffe; Sergey A. Krasnikov; Alexei Preobrajenski; Zheshen Li; Natalia N. Sergeeva; Mathias O. Senge; Attilio A. Cafolla

A Ni-Cu ion exchange has been observed for (5,15-dibromo-10,20-diphenylporphyrinato)nickel(II) (NiDBrDPP) and (5,10,15,20-tetrakis(4-bromophenyl)porphyrinato)nickel(II) (NiTBrPP) on Cu(111). The ion exchange proceeds at a faster rate for the NiDBrDPP/Cu(111) system compared to NiTBrPP/Cu(111). This is explained in terms of the macrocycle-substrate distance and the distortions that occur when the molecules are deposited on the Cu(111) surface.

Collaboration


Dive into the Alexei Preobrajenski's collaboration.

Top Co-Authors

Avatar

A. S. Vinogradov

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. V. Vyalikh

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar

Sergeij A. Krasnikov

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Laubschat

Dresden University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge