Alexei V. Nikitin
University of Kansas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexei V. Nikitin.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1998
Alexei V. Nikitin; Ruslan L. Davidchack; T. P. Armstrong
Abstract The problem of counting rates in a counting detection system is viewed as a stochastic problem of mean threshold crossing rates for a dynamic system driven by a stationary random force. We present a general formula for calculating the rates of such a system at an arbitrary threshold for all values of event occurrence rates, given that the amplitude distribution of the incoming events and the impulse response of the detection system are known. From a single general formula we derive asymptotic expressions for counting rates at both limits of high and low incoming rates. We give a simple expression for the saturation counting rate of a detection system and show that for a high-order pile-up the average intensity and variation of the incoming signal can be determined by measuring the counting rates at two thresholds. For low incoming rates, we show how the unknown incoming distribution can be computed from the measured pulse-height spectrum. Based on the asymptotic results, we demonstrate how to construct an approximation to the impulse response function of the detection system, which facilitates numerical evaluation of the general formula. In each case, we present a comparison with numerical experiments. Throughout the paper, we illustrate how well-known experimental facts can be deduced from a single general formula.
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences | 2003
Alexei V. Nikitin; Ruslan L. Davidchack
We present an approach to the analysis of signals based on analog representation of measurements. Methodologically, it relies on the consideration and full use of the continuous nature of a realistic, as opposed to an idealized, measuring process. Mathematically, it is based on the transformation of discrete or continuous signals into normalized continuous scalar fields with the mathematical properties of distribution functions. This approach allows a simple and efficient implementation of many traditionally digital analysis tools, including nonlinear filtering techniques based on order statistics. It also enables the introduction of a large variety of new characteristics of both one– and multi–dimensional signals, which have no digital counterparts.
EURASIP Journal on Advances in Signal Processing | 2015
Alexei V. Nikitin; Ruslan L. Davidchack; Jeffrey Smith
In a perfect world, we would have ‘brick wall’ filters, no-distortion amplifiers and mixers, and well-coordinated spectrum operations. The real world, however, is prone to various types of unintentional and intentional interference of technogenic (man-made) origin that can disrupt critical communication systems. In this paper, we introduce a methodology for mitigating technogenic interference in communication channels by analog nonlinear filters, with an emphasis on the mitigation of out-of-band and adjacent-channel interference.Interference induced in a communications receiver by external transmitters can be viewed as wide-band non-Gaussian noise affecting a narrower-band signal of interest. This noise may contain a strong component within the receiver passband, which may dominate over the thermal noise. While the total wide-band interference seen by the receiver may or may not be impulsive, we demonstrate that the interfering component due to power emitted by the transmitter into the receiver channel is likely to appear impulsive under a wide range of conditions. We give an example of mechanisms of impulsive interference in digital communication systems resulting from the nonsmooth nature of any physically realizable modulation scheme for transmission of a digital (discontinuous) message.We show that impulsive interference can be effectively mitigated by nonlinear differential limiters (NDLs). An NDL can be configured to behave linearly when the input signal does not contain outliers. When outliers are encountered, the nonlinear response of the NDL limits the magnitude of the respective outliers in the output signal. The signal quality is improved in excess of that achievable by the respective linear filter, increasing the capacity of a communications channel. The behavior of an NDL, and its degree of nonlinearity, is controlled by a single parameter in a manner that enables significantly better overall suppression of the noise-containing impulsive components compared to the respective linear filter. Adaptive configurations of NDLs are similarly controlled by a single parameter and are suitable for improving quality of nonstationary signals under time-varying noise conditions. NDLs are designed to be fully compatible with existing linear devices and systems and to be used as an enhancement, or as a low-cost alternative, to the state-of-art interference mitigation methods.
EURASIP Journal on Advances in Signal Processing | 2012
Alexei V. Nikitin; Marc Anthony Epard; John Berns Lancaster; Robert Leon Lutes; Eric Alexander Shumaker
A strong digital communication transmitter in close physical proximity to a receiver of a weak signal can noticeably interfere with the latter even when the respective channels are tens or hundreds of megahertz apart. When time domain observations are made in the signal chain of the receiver between the first mixer and the baseband, this interference is likely to appear impulsive. The impulsive nature of this interference provides an opportunity to reduce its power by nonlinear filtering, improving the quality of the receiver channel. This article describes the mitigation, by a particular nonlinear filter, of the impulsive out-of-band (OOB) interference induced in High Speed Downlink Packet Access (HSDPA) by WiFi transmissions, protocols which coexist in many 3G smartphones and mobile hotspots. Our measurements show a decrease in the maximum error-free bit rate of a 1.95 GHz HSDPA receiver caused by the impulsive interference from an OOB 2.4 GHz WiFi transmission, sometimes down to a small fraction of the rate observed in the absence of the interference. We apply a nonlinear SPART filter to recover a noticeable portion of the lost rate and maintain an error-free connection under much higher levels of the WiFi interference than a receiver that does not contain such a filter. These measurements support our wider investigation of OOB interference resulting from digital modulation, which appears impulsive in a receiver, and its mitigation by nonlinear filters.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2003
Alexei V. Nikitin; Ruslan L. Davidchack; T. P. Armstrong
Characterizing rates of occurrence of various features of a signal is of great importance in numerous types of physical measurements. Such signal features can be defined as certain discrete coincidence events, e.g. crossings of a signal with a given threshold, or occurrence of extrema of a certain amplitude. We describe measuring rates of such events by means of analog multivariate counting analyzers. Given a continuous scalar or multicomponent (vector) input signal, an analog counting analyzer outputs a continuous signal with the instantaneous magnitude equal to the rate of occurrence of certain coincidence events. The analog nature of the proposed analyzers allows us to reformulate many problems of the traditional counting measurements, and cast them in a form which is readily addressed by methods of differential calculus rather than by algebraic or logical means of digital signal processing. Analog counting analyzers can be easily implemented in discrete or integrated electronic circuits, do not suffer from dead time effects, and allow substantial reduction of pileup effects. Besides extending the scope of counting measurements, analog multivariate counting analyzers allow simple feedback adjustment of the parameters of the acquisition system for optimal performance. In addition, such analyzers can be made simpler, cheaper, lighter, more reliable, more accurate, and less power consuming than digital counting detectors, and thus would be ideally suited for operation in autonomous conditions such as mobile communication, space missions, prosthetic devices, etc. Other obvious immediate applications of the presented analyzers are pulse-height measuring systems used in the acquisition of nuclear radiation spectra. r 2002 Elsevier Science B.V. All rights reserved.
military communications conference | 2013
Alexei V. Nikitin; Ruslan L. Davidchack; Timothy J. Sobering
We introduce algorithms and conceptual circuits for Nonlinear Differential Limiters (NDLs), and outline a methodology for their use to mitigate in-band noise and interference, especially that of technogenic (man-made) origin, affecting various real, complex, and/or vector signals of interest, and limiting the performance of the affected devices and services. At any given frequency, a linear filter affects both the noise and the signal of interest proportionally, and when a linear filter is used to suppress the interference outside of the passband of interest, the resulting signal quality is invariant to the type of the amplitude distribution of the interfering signal, as long as the total power and the spectral composition of the interference remain unchanged. Such a linear filter can be converted into an NDL by introducing an appropriately chosen feedback-based nonlinearity into the response of the filter, and the NDL may reduce the spectral density of particular types of interferences in the signal passband without significantly affecting the signal of interest. As a result, the signal quality can be improved in excess of that achievable by the respective linear filter. The behavior of an NDL filter and its degree of nonlinearity is controlled by a single parameter in a manner that enables significantly better overall suppression of the noise compared to the respective linear filter, especially when the noise contains components of technogenic origin. Adaptive configurations of NDLs are similarly controlled by a single parameter, and are suitable for improving quality of non-stationary signals under time-varying noise conditions. NDLs are designed to be fully compatible with existing linear devices and systems, and to be used as an enhancement, or as a low-cost alternative, to the state-of-art interference mitigation methods.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1997
Alexei V. Nikitin; Ruslan L. Davidchack; T. P. Armstrong
Abstract A technique for computing counting rates of silicon detectors in case of multiple absorption events has been developed. It enables quantitative analysis of the response of solid-state detectors flown in space to solar X-ray events of different intensities and temperatures. The technique is applied to computing the responses of generic types of satellite detectors to solar X-ray emission spectra in the 5 to 40 MK temperature range. Comparison with the data available for the Energetic Particle Experiment (EPE) flown on the IMP 8 satellite confirms that many-fold coincidence of photon absorption pulses can account for the response of solid-state detectors to solar X-rays. With an example of a two-threshold detector, it is shown that silicon detectors can be used to measure both the temperature and the emission measure of solar X-ray flares.
military communications conference | 2017
Alexei V. Nikitin; Ruslan L. Davidchack
Since at any given frequency a linear filter affects both the noise and the signal of interest proportionally, when a linear filter is used to suppress the interference outside of the passband of interest the resulting signal quality is affected only by the total power and spectral composition, but not by the type of the amplitude distribution of the interfering signal. Thus a linear filter cannot improve the passband signal-to-noise ratio, regardless of the type of noise. On the other hand, a nonlinear filter has the ability to disproportionately affect signals with different temporal and/or amplitude structures, and it may reduce the spectral density of non-Gaussian interferences in the signal passband without significantly affecting the signal of interest. As a result, the signal quality can be improved in excess of that achievable by a linear filter. Such non-Gaussian (and, in particular, impulsive) noise can originate from a multitude of natural and technogenic (man-made) phenomena. The technogenic noise specifically is a ubiquitous and growing source of harmful interference affecting communication and data acquisition systems, and such noise may dominate over the thermal noise. While the non-Gaussian nature of technogenic noise provides an opportunity for its effective mitigation by nonlinear filtering, current state-of-the-art approaches employ such filtering in the digital domain, after analog-to-digital conversion. In the process of such conversion, the signal bandwidth is reduced, which substantially diminishes the effectiveness of the subsequent noise removal techniques. In this paper, we focus on impulsive noise mitigation, and propose to incorporate impulsive noise filtering of the analog input signal into loop filters of ΔΣ analog-to-digital converters (ADCs). Such ADCs thus combine analog-to-digital conversion with analog nonlinear rank filtering, enabling mitigation of various types of in-band non-Gaussian noise and interference, including broadband impulsive interference. An important property of the presented approach is that, while being nonlinear in general, the proposed ADCs largely behave linearly. They exhibit nonlinear behavior only intermittently, in response to noise outliers, thus avoiding the detrimental effects, such as instabilities and intermodulation distortions, often associated with nonlinear signal processing.
ieee latin american conference on communications | 2017
Reza Barazideh; Balasubramaniam Natarajan; Alexei V. Nikitin; Ruslan L. Davidchack
Asynchronous and cyclostationary impulsive noise can severely impact the bit-error-rate (BER) of OFDM-based powerline communication systems. In this paper, we analyze an adaptive nonlinear analog front end filter that mitigates various types of impulsive noise without detrimental effects such as self-interference and out-of-band power leakage caused by other nonlinear approaches like clipping and blanking. Our proposed Adaptive Nonlinear Differential Limiter (ANDL) is constructed from a linear analog filter by applying a feedback-based nonlinearity, controlled by a single resolution parameter. We present a simple practical method to find the value of this resolution parameter that ensures the mitigation of impulsive without impacting the desired OFDM signal. Unlike many prior approaches for impulsive noise mitigation that assume a statistical noise model, ANDL is blind to the exact nature of the noise distribution, and is designed to be fully compatible with existing linear front end filters. We demonstrate the potency of ANDL by simulating the OFDM-based narrowband PLC compliant with the IEEE standards. We show that the proposed ANDL outperforms other approaches in reducing the BER in impulsive noise environments.
Archive | 2001
Alexei V. Nikitin; Mark G. Frei; Naresh C. Bhavaraju; Ivan Osorio