Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexey A. Gavrilov is active.

Publication


Featured researches published by Alexey A. Gavrilov.


Genome Research | 2016

Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains

Sergey V. Ulianov; Ekaterina E. Khrameeva; Alexey A. Gavrilov; Ilya M. Flyamer; Pavel Kos; Elena A. Mikhaleva; Aleksey A. Penin; Maria D. Logacheva; Maxim Imakaev; Alexander V. Chertovich; Mikhail S. Gelfand; Yuri Y. Shevelyov; Sergey V. Razin

Recent advances enabled by the Hi-C technique have unraveled many principles of chromosomal folding that were subsequently linked to disease and gene regulation. In particular, Hi-C revealed that chromosomes of animals are organized into topologically associating domains (TADs), evolutionary conserved compact chromatin domains that influence gene expression. Mechanisms that underlie partitioning of the genome into TADs remain poorly understood. To explore principles of TAD folding in Drosophila melanogaster, we performed Hi-C and poly(A)(+) RNA-seq in four cell lines of various origins (S2, Kc167, DmBG3-c2, and OSC). Contrary to previous studies, we find that regions between TADs (i.e., the inter-TADs and TAD boundaries) in Drosophila are only weakly enriched with the insulator protein dCTCF, while another insulator protein Su(Hw) is preferentially present within TADs. However, Drosophila inter-TADs harbor active chromatin and constitutively transcribed (housekeeping) genes. Accordingly, we find that binding of insulator proteins dCTCF and Su(Hw) predicts TAD boundaries much worse than active chromatin marks do. Interestingly, inter-TADs correspond to decompacted inter-bands of polytene chromosomes, whereas TADs mostly correspond to densely packed bands. Collectively, our results suggest that TADs are condensed chromatin domains depleted in active chromatin marks, separated by regions of active chromatin. We propose the mechanism of TAD self-assembly based on the ability of nucleosomes from inactive chromatin to aggregate, and lack of this ability in acetylated nucleosomal arrays. Finally, we test this hypothesis by polymer simulations and find that TAD partitioning may be explained by different modes of inter-nucleosomal interactions for active and inactive chromatin.


Methods of Molecular Biology | 2009

Chromosome Conformation Capture (from 3C to 5C) and Its ChIP-Based Modification

Alexey A. Gavrilov; Elvira R. Eivazova; Iryna Pirozhkova; Marc Lipinski; Sergey V. Razin; Yegor Vassetzky

Chromosome conformation capture (3C) methodology was developed to study spatial organization of long genomic regions in living cells. Briefly, chromatin is fixed with formaldehyde in vivo to cross-link interacting sites, digested with a restriction enzyme and ligated at a low DNA concentration so that ligation between cross-linked fragments is favored over ligation between random fragments. Ligation products are then analyzed and quantified by PCR. So far, semi-quantitative PCR methods were widely used to estimate the ligation frequencies. However, it is often important to estimate the ligation frequencies more precisely which is only possible by using the real-time PCR. At the same time, it is equally necessary to monitor the specificity of PCR amplification. That is why the real-time PCR with TaqMan probes is becoming more and more popular in 3C studies. In this chapter, we describe the general protocol for 3C analysis with the subsequent estimation of ligation frequencies by using the real-time PCR technology with TaqMan probes. We discuss in details all steps of the experimental procedure paying special attention to weak points and possible ways to solve the problems. A special attention is also paid to the problems in interpretation of the results and necessary control experiments. Besides, in theory, we consider other approaches to analysis of the ligation products used in frames of the so-called 4C and 5C methods. The recently developed chromatin immunoprecipitation (ChIP)-loop assay representing a combination of 3C and ChIP is also discussed.


Nucleic Acids Research | 2013

Disclosure of a structural milieu for the proximity ligation reveals the elusive nature of an active chromatin hub

Alexey A. Gavrilov; E. S. Gushchanskaya; O. S. Strelkova; Oksana Zhironkina; Igor Kireev; Olga V. Iarovaia; Sergey V. Razin

The current progress in the study of the spatial organization of interphase chromosomes became possible owing to the development of the chromosome conformation capture (3C) protocol. The crucial step of this protocol is the proximity ligation—preferential ligation of DNA fragments assumed to be joined within nuclei by protein bridges and solubilized as a common complex after formaldehyde cross-linking and DNA cleavage. Here, we show that a substantial, and in some cases the major, part of DNA is not solubilized from cross-linked nuclei treated with restriction endonuclease(s) and sodium dodecyl sulphate and that this treatment neither causes lysis of the nucleus nor drastically affects its internal organization. Analysis of the ligation frequencies of the mouse β-globin gene domain DNA fragments demonstrated that the previously reported 3C signals were generated predominantly, if not exclusively, in the insoluble portion of the 3C material. The proximity ligation thus occurs within the cross-linked chromatin cage in non-lysed nuclei. The finding does not compromise the 3C protocol but allows the consideration of an active chromatin hub as a folded chromatin domain or a nuclear compartment rather than a rigid complex of regulatory elements.


Nucleic Acids Research | 2008

Spatial configuration of the chicken α-globin gene domain: immature and active chromatin hubs

Alexey A. Gavrilov; Sergey V. Razin

The spatial configuration of the chicken α-globin gene domain in erythroid and lymphoid cells was studied by using the Chromosome Conformation Capture (3C) approach. Real-time PCR with TaqMan probes was employed to estimate the frequencies of cross-linking of different restriction fragments within the domain. In differentiated cultured erythroblasts and in 10-day chick embryo erythrocytes expressing ‘adult’ αA and αD globin genes the following elements of the domain were found to form an ‘active’ chromatin hub: upstream Major Regulatory Element (MRE), −9 kb upstream DNase I hypersensitive site (DHS), −4 kb upstream CpG island, αD gene promoter and the downstream enhancer. The αA gene promoter was not present in the ‘active’ chromatin hub although the level of αA gene transcription exceeded that of the αD gene. Formation of the ‘active’ chromatin hub was preceded by the assembly of multiple incomplete hubs containing MRE in combination with either −9 kb DHS or other regulatory elements of the domain. These incomplete chromatin hubs were present in proliferating cultured erythroblasts which did not express globin genes. In lymphoid cells only the interaction between the αD promoter and the CpG island was detected.


Nucleic Acids Research | 2011

Transcription factories in the context of the nuclear and genome organization

Sergey V. Razin; Alexey A. Gavrilov; A. Pichugin; M. Lipinski; Olga V. Iarovaia; Yegor S. Vassetzky

In the eukaryotic nucleus, genes are transcribed in transcription factories. In the present review, we re-evaluate the models of transcription factories in the light of recent and older data. Based on this analysis, we propose that transcription factories result from the aggregation of RNA polymerase II-containing pre-initiation complexes assembled next to each other in the nuclear space. Such an aggregation can be triggered by the phosphorylation of the C-terminal domain of RNA polymerase II molecules and their interaction with various transcription factors. Individual transcription factories would thus incorporate tissue-specific, co-regulated as well as housekeeping genes based only on their initial proximity to each other in the nuclear space. Targeting genes to be transcribed to protein-dense factories that contain all factors necessary for transcription initiation and elongation through chromatin templates clearly favors a more economical utilization and better recycling of the transcription machinery.


Molecular and Cellular Biology | 2006

A CTCF-Dependent Silencer Located in the Differentially Methylated Area May Regulate Expression of a Housekeeping Gene Overlapping a Tissue-Specific Gene Domain

Denis Klochkov; Héctor Rincón-Arano; E. S. Ioudinkova; Viviana Valadez-Graham; Alexey A. Gavrilov; Félix Recillas-Targa; Sergey V. Razin

ABSTRACT The tissue-specific chicken α-globin gene domain represents one of the paradigms, in terms of its constitutively open chromatin conformation and the location of several regulatory elements within the neighboring housekeeping gene. Here, we show that an 0.2-kb DNA fragment located ∼4 kb upstream to the chicken α-globin gene cluster contains a binding site for the multifunctional protein factor CTCF and possesses silencer activity which depends on CTCF binding, as demonstrated by site-directed mutagenesis of the CTCF recognition sequence. CTCF was found to be associated with this recognition site in erythroid cells but not in lymphoid cells where the site is methylated. A functional promoter directing the transcription of the apparently housekeeping ggPRX gene was found 120 bp from the CTCF-dependent silencer. The data are discussed in terms of the hypothesis that the CTCF-dependent silencer stabilizes the level of ggPRX gene transcription in erythroid cells where the promoter of this gene may be influenced by positive cis-regulatory signals activating α-globin gene transcription.


Journal of Chemical Physics | 2013

Phase diagrams of block copolymer melts by dissipative particle dynamics simulations

Alexey A. Gavrilov; Yaroslav V. Kudryavtsev; Alexander V. Chertovich

Phase diagrams for monodisperse and polydisperse diblock copolymer melts and a random multiblock copolymer melt are constructed using dissipative particle dynamics simulations. A thorough visual analysis and calculation of the static structure factor in several hundreds of points at each of the diagrams prove the ability of mesoscopic molecular dynamics to predict the phase behavior of polymer systems as effectively as the self-consistent field-theory and Monte Carlo simulations do. It is demonstrated that the order-disorder transition (ODT) curve for monodisperse diblocks can be precisely located by a spike in the dependence of the mean square pressure fluctuation on χN, where χ is the Flory-Huggins parameter and N is the chain length. For two other copolymer types, the continuous ODTs are observed. Large polydispersity of both blocks obeying the Flory distribution in length does not shift the ODT curve but considerably narrows the domains of the cylindrical and lamellar phases partially replacing them with the wormlike micelle and perforated lamellar phases, respectively. Instead of the pure 3d-bicontinuous phase in monodisperse diblocks, which could be identified as the gyroid, a coexistence of the 3d phase and cylindrical micelles is detected in polydisperse diblocks. The lamellar domain spacing D in monodisperse diblocks follows the strong-segregation theory prediction, D∕N(1∕2) ~ (χN)(1∕6), whereas in polydisperse diblocks it is almost independent of χN at χN < 100. Completely random multiblock copolymers cannot form ordered microstructures other than lamellas at any composition.


FEBS Letters | 2013

Communication of genome regulatory elements in a folded chromosome

Sergey V. Razin; Alexey A. Gavrilov; E. S. Ioudinkova; Olga V. Iarovaia

The most popular model of gene activation by remote enhancers postulates that the enhancers interact directly with target promoters via the looping of intervening DNA fragments. This interaction is thought to be necessary for the stabilization of the Pol II pre‐initiation complex and/or for the transfer of transcription factors and Pol II, which are initially accumulated at the enhancer, to the promoter. The direct interaction of enhancer(s) and promoter(s) is only possible when these elements are located in close proximity within the nuclear space. Here, we discuss the molecular mechanisms for maintaining the close proximity of the remote regulatory elements of the eukaryotic genome. The models of an active chromatin hub (ACH) and an active nuclear compartment are considered, focusing on the role of chromatin folding in juxtaposing remote DNA sequences. The interconnection between the functionally dependent architecture of the interphase chromosome and nuclear compartmentalization is also discussed.


Epigenetics | 2014

Chromatin without the 30-nm fiber: constrained disorder instead of hierarchical folding.

Sergey V. Razin; Alexey A. Gavrilov

Several hierarchical levels of DNA packaging are believed to exist in chromatin, starting from a 10-nm chromatin fiber that is further packed into a 30-nm fiber. Transitions between the 30-nm and 10-nm fibers are thought to be essential for the control of chromatin transcriptional status. However, recent studies demonstrate that in the nuclei, DNA is packed in tightly associated 10-nm fibers that are not compacted into 30-nm fibers. Additionally, the accessibility of DNA in chromatin depends on the local mobility of nucleosomes rather than on decompaction of chromosome regions. These findings argue for reconsidering the hierarchical model of chromatin packaging and some of the basic definitions of chromatin. In particular, chromatin domains should be considered as three-dimensional objects, which may include genomic regions that do not necessarily constitute a continuous domain on the DNA chain.


Physical Review Letters | 2015

Anomalous Diffusion in Fractal Globules

M. V. Tamm; Leonid I. Nazarov; Alexey A. Gavrilov; Alexander V. Chertovich

The fractal globule state is a popular model for describing chromatin packing in eukaryotic nuclei. Here we provide a scaling theory and dissipative particle dynamics computer simulation for the thermal motion of monomers in the fractal globule state. Simulations starting from different entanglement-free initial states show good convergence which provides evidence supporting the existence of a unique metastable fractal globule state. We show monomer motion in this state to be subdiffusive described by ⟨X(2)(t)⟩∼t(αF) with αF close to 0.4. This result is in good agreement with existing experimental data on the chromatin dynamics, which makes an additional argument in support of the fractal globule model of chromatin packing.

Collaboration


Dive into the Alexey A. Gavrilov's collaboration.

Top Co-Authors

Avatar

Sergey V. Razin

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olga V. Iarovaia

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. S. Ioudinkova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Arkadiy K. Golov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge