Alexey A. Kuznetsov
Armagh Observatory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexey A. Kuznetsov.
The Astrophysical Journal | 2010
Gregory D. Fleishman; Alexey A. Kuznetsov
Radiation produced by charged particles gyrating in a magnetic field is highly significant in the astrophysics context. Persistently increasing resolution of astrophysical observations calls for corresponding three-dimensional modeling of the radiation. However, available exact equations are prohibitively slow in computing a comprehensive table of high-resolution models required for many practical applications. To remedy this situation, we develop approximate gyrosynchrotron (GS) codes capable of quickly calculating the GS emission (in non-quantum regime) from both isotropic and anisotropic electron distributions in non-relativistic, mildly relativistic, and ultrarelativistic energy domains applicable throughout a broad range of source parameters including dense or tenuous plasmas and weak or strong magnetic fields. The computation time is reduced by several orders of magnitude compared with the exact GS algorithm. The new algorithm performance can gradually be adjusted to the users needs depending on whether precision or computation speed is to be optimized for a given model. The codes are made available for users as a supplement to this paper.
Nature | 2015
Gregg Hallinan; S. P. Littlefair; Garret Cotter; S. Bourke; Leon K. Harding; J. S. Pineda; R. P. Butler; Aaron Golden; Gibor Basri; J. G. Doyle; Melodie M. Kao; Svetlana V. Berdyugina; Alexey A. Kuznetsov; Michael P. Rupen; A. Antonova
Aurorae are detected from all the magnetized planets in our Solar System, including Earth. They are powered by magnetospheric current systems that lead to the precipitation of energetic electrons into the high-latitude regions of the upper atmosphere. In the case of the gas-giant planets, these aurorae include highly polarized radio emission at kilohertz and megahertz frequencies produced by the precipitating electrons, as well as continuum and line emission in the infrared, optical, ultraviolet and X-ray parts of the spectrum, associated with the collisional excitation and heating of the hydrogen-dominated atmosphere. Here we report simultaneous radio and optical spectroscopic observations of an object at the end of the stellar main sequence, located right at the boundary between stars and brown dwarfs, from which we have detected radio and optical auroral emissions both powered by magnetospheric currents. Whereas the magnetic activity of stars like our Sun is powered by processes that occur in their lower atmospheres, these aurorae are powered by processes originating much further out in the magnetosphere of the dwarf star that couple energy into the lower atmosphere. The dissipated power is at least four orders of magnitude larger than what is produced in the Jovian magnetosphere, revealing aurorae to be a potentially ubiquitous signature of large-scale magnetospheres that can scale to luminosities far greater than those observed in our Solar System. These magnetospheric current systems may also play a part in powering some of the weather phenomena reported on brown dwarfs.
The Astrophysical Journal | 2015
Gelu M. Nita; Gregory D. Fleishman; Alexey A. Kuznetsov; Eduard P. Kontar; Dale E. Gary
Many problems in solar physics require analysis of imaging data obtained in multiple wavelength domains with differing spatial resolution in a framework supplied by advanced three-dimensional (3D) physical models. To facilitate this goal, we have undertaken a major enhancement of our IDL-based simulation tools developed earlier for modeling microwave and X-ray emission. The enhanced software architecture allows the user to (1) import photospheric magnetic field maps and perform magnetic field extrapolations to generate 3D magnetic field models; (2) investigate the magnetic topology by interactively creating field lines and associated flux tubes; (3) populate the flux tubes with user-defined nonuniform thermal plasma and anisotropic, nonuniform, nonthermal electron distributions; (4) investigate the spatial and spectral properties of radio and X-ray emission calculated from the model; and (5) compare the model-derived images and spectra with observational data. The package integrates shared-object libraries containing fast gyrosynchrotron emission codes, IDL-based soft and hard X-ray codes, and potential and linear force-free field extrapolation routines. The package accepts user-defined radiation and magnetic field extrapolation plug-ins. We use this tool to analyze a relatively simple single-loop flare and use the model to constrain the magnetic 3D structure and spatial distribution of the fast electrons inside this loop. We iteratively compute multi-frequency microwave and multi-energy X-ray images from realistic magnetic flux tubes obtained from pre-flare extrapolations, and compare them with imaging data obtained by SDO, NoRH, and RHESSI. We use this event to illustrate the tools use for the general interpretation of solar flares to address disparate problems in solar physics.
The Astrophysical Journal | 2011
Alexey A. Kuznetsov; Gelu M. Nita; Gregory D. Fleishman
Microwave emission of solar flares is formed primarily by incoherent gyrosynchrotron radiation generated by accelerated electrons in coronal magnetic loops. The resulting emission depends on many factors, including pitch-angle distribution of the emitting electrons and the source geometry. In this work, we perform systematic simulations of solar microwave emission using recently developed tools (GS Simulator and fast gyrosynchrotron codes) capable of simulating maps of radio brightness and polarization as well as spatially resolved emission spectra. A three-dimensional model of a symmetric dipole magnetic loop is used. We compare the emission from isotropic and anisotropic (of loss-cone type) electron distributions. We also investigate effects caused by inhomogeneous distribution of the emitting particles along the loop. It is found that the effect of the adopted moderate electron anisotropy is the most pronounced near the footpoints and it also depends strongly on the loop orientation. Concentration of the emitting particles at the looptop results in a corresponding spatial shift of the radio brightness peak, thus reducing effects of the anisotropy. The high-frequency ( 50 GHz) emission spectral index is specified mainly by the energy spectrum of the emitting electrons; however, at intermediate frequencies (around 10-20 GHz), the spectrum shape is strongly dependent on the electron anisotropy, spatial distribution, and magnetic field nonuniformity. The implications of the obtained results for the diagnostics of the energetic electrons in solar flares are discussed.
Astronomy and Astrophysics | 2013
A. Antonova; Gregg Hallinan; J. G. Doyle; S. Yu; Alexey A. Kuznetsov; Y. Metodieva; Aaron Golden; Kelle L. Cruz
Aims. We aim to increase the sample of ultracool dwarfs studied in the radio domain to allow a more statistically significant und erstanding of the physical conditions associated with these magnetically active objects. Methods. We conducted a volume-limited survey at 4.9 GHz of 32 nearby ultracool dwarfs with spectral types covering the range M7 ‐ T8. A statistical analysis was performed on the combined data from the present survey and previous radio observations of ultracool dwarfs. Results. Whilst no radio emission was detected from any of the targets, significant upper limits were placed on the radio luminosit ies that are below the luminosities of previously detected ultr acool dwarfs. Combining our results with those from the literature gives a detection rate for dwarfs in the spectral range M7 ‐ L3.5 of∼ 9%. In comparison, only one dwarf later than L3.5 is detected in 53 observations. We report the observed detection rate as a function of spectral type, and the number distribution of the dwarfs as a function of spectral type and rotation velocity. Conclusions. The radio observations to date point to a drop in the detection rate toward the ultracool dwarfs. However, the emission levels of detected ultracool dwarfs are comparable to those of earlier type active M dwarfs, which may imply that a mildly relativistic electron beam or a strong magnetic field can exist in ultracoo l dwarfs. Fast rotation may be a suffi cient condition to produce magnetic fields strengths of several hundreds Gauss to several kilo Ga uss, as suggested by the data for the active ultracool dwarfs with known rotation rates. A possible reason for the non-detection of r adio emission from some dwarfs is that maybe the centrifugal acceleration mechanism in these dwarfs is weak (due to a low rotation rate) and thus cannot provide the necessary density and/or energy of accelerated electrons. An alternative explanation could be l ong-term variability, as is the case for several ultracool d warfs whose radio emission varies considerably over long periods with emission levels dropping below the detection limit in some instances.
Astronomy and Astrophysics | 2011
S. Yu; Gregg Hallinan; J. G. Doyle; Alexander L. MacKinnon; A. Antonova; Alexey A. Kuznetsov; Aaron Golden; Z.H. Zhang
Context. Recently, unanticipated magnetic activity in ultracool dwarfs (UCDs, spectral classes later than M7) has emerged from a number of radio observations. The highly (up to 100%) circularly polarized nature and high brightness temperature of the emission have been interpreted as requiring an effective amplification mechanism of the high-frequency electromagnetic waves − the electron cyclotron maser instability (ECMI). Aims. We aim to understand the magnetic topology and the properties of the radio emitting region and associated plasmas in these ultracool dwarfs, interpreting the origin of radio pulses and their radiation mechanism. Methods. An active region model was built, based on the rotation of the UCD and the ECMI mechanism. Results. The high degree of variability in the brightness and the diverse profile of pulses can be interpreted in terms of a large-scale hot active region with extended magnetic structure existing in the magnetosphere of TVLM 513-46546. We suggest the time profile of the radio light curve is in the form of power law in the model. Combining the analysis of the data and our simulation, we can determine the loss-cone electrons have a density in the range of 1.25 ×10 5 −5 ×10 5 cm −3 and temperature between 10 7 and 5 ×10 7 K. The active region has a size <1 RJup, while the pulses produced by the ECMI mechanism are from a much more compact region (e.g. ∼0.007 RJup). A surface magnetic field strength of ≈7000 G is predicted. Conclusions. The active region model is applied to the radio emission from TVLM 513-46546, in which the ECMI mechanism is responsible for the radio bursts from the magnetic tubes and the rotation of the dwarf can modulate the integral of flux with respect to time. The radio emitting region consists of complicated substructures. With this model, we can determine the nature (e.g. size, temperature, density) of the radio emitting region and plasma. The magnetic topology can also be constrained. We compare our predicted X-ray flux with Chandra X-ray observation of TVLM 513-46546. Although the X-ray detection is only marginally significant, our predicted flux is significantly lower than the observed flux. Further multi-wavelength observations will help us better understand the magnetic field structure and plasma behavior on the ultracool dwarf.
The Astrophysical Journal | 2012
S. Yu; J. G. Doyle; Alexey A. Kuznetsov; Gregg Hallinan; A. Antonova; Alexander L. MacKinnon; Aaron Golden
We present the numerical simulations for an electron-beam-driven and loss-cone-driven electron-cyclotron maser (ECM) with different plasma parameters and different magnetic field strengths for a relatively small region and short timescale in an attempt to interpret the recent discovered intense radio emission from ultracool dwarfs. We find that a large amount of electromagnetic (EM) field energy can be effectively released from the beam-driven ECM, which rapidly heats the surrounding plasma. A rapidly developed high-energy tail of electrons in velocity space (resulting from the heating process of the ECM) may produce the radio continuum depending on the initial strength of the external magnetic field and the electron beam current. Both significant linear polarization and circular polarization of EM waves can be obtained from the simulations. The spectral energy distributions of the simulated radio waves show that harmonics may appear from 10 to 70ν_(pe) (ν_(pe) is the electron plasma frequency) in the non-relativistic case and from 10 to 600ν_(pe) in the relativistic case, which makes it difficult to find the fundamental cyclotron frequency in the observed radio frequencies. A wide frequency band should therefore be covered by future radio observations.
Solar Physics | 2015
Alexey A. Kuznetsov; Eduard P. Kontar
We investigated in detail the 21 May 2004 flare using simultaneous observations of the Nobeyama Radioheliograph, the Nobeyama Radiopolarimeters, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and the Solar and Heliospheric Observatory (SOHO). The flare images in different spectral ranges reveal a well-defined single flaring loop in this event. We simulated the gyrosynchrotron microwave emission using the recently developed interactive IDL tool GX Simulator. By comparing the simulation results with the observations, we deduced the spatial and spectral properties of the non-thermal electron distribution. The microwave emission has been found to be produced by the high-energy electrons (> 100 keV) with a relatively hard spectrum (δ≃2); the electrons were strongly concentrated near the loop top. At the same time, the number of high-energy electrons near the footpoints was too low to be detected in the RHESSI images and spatially unresolved data. The SOHO Extreme-ultraviolet Imaging Telescope images and the low-frequency microwave spectra suggest the presence of an extended “envelope” of the loop with lower magnetic field. Most likely, the energetic electron distribution in the considered flare reflects the localized (near the loop top) particle acceleration (injection) process accompanied by trapping and scattering.
The Astrophysical Journal | 2014
Gregory D. Fleishman; Alexey A. Kuznetsov
Currently there is a concern about the ability of the classical thermal (Maxwellian) distribution to describe quasi-steady-state plasma in the solar atmosphere, including active regions. In particular, other distributions have been proposed to better fit observations, for example, kappa- and n-distributions. If present, these distributions will generate radio emissions with different observable properties compared with the classical gyroresonance (GR) or free-free emission, which implies a way of remotely detecting these non-Maxwellian distributions in the radio observations. Here we present analytically derived GR and free-free emissivities and absorption coefficients for the kappa- and n-distributions, and discuss their properties, which are in fact remarkably different from each other and from the classical Maxwellian plasma. In particular, the radio brightness temperature from a gyrolayer increases with the optical depth τ for kappa-distribution, but decreases with τ for n-distribution. This property has a remarkable consequence allowing a straightforward observational test: the GR radio emission from the non-Maxwellian distributions is supposed to be noticeably polarized even in the optically thick case, where the emission would have strictly zero polarization in the case of Maxwellian plasma. This offers a way of remote probing the plasma distribution in astrophysical sources, including solar active regions as a vivid example.
The Astrophysical Journal | 2010
Alexey A. Kuznetsov; Valentina V. Zharkova
We investigate the spectra and polarization of the gyrosynchrotron microwave (MW) emission generated by anisotropic electron beams in the solar corona. The electron distributions are selected from the steady propagation/ precipitation model of beam electrons obtained from the time-dependent solutions of the Fokker–Planck equation taking into account particle anisotropic precipitation into a converging magnetic tube while losing energy in collisions and Ohmic losses induced by a self-induced electric field. We separate the effects of converging magnetic field from those of self-induced electric field for beams with different initial energy fluxes and spectral indices. The effect of returning electrons of the beam is negligible for the beams with relatively weak energy fluxes (F 10 10 erg cm −2 s −1 ), while it becomes very important for the electron beams with F 10 12 erg cm −2 s −1 . Electric field-induced losses lead to the increase of MW emission intensity, especially at larger viewing angles (θ 140 ◦ , looking at the loop from a side). The polarization remains typical for the beam-like distributions. The combined effect of the self-induced electric field and converging magnetic field reveals a noticeable (up to a factor of 10) increase of the emission intensity (for the viewing angles θ � 140 ◦ –150 ◦ ) in comparison with the models considering only collision factor, especially in the deeper precipitation layers (near the loop footpoints). Thus, considering the self-induced electric field is especially important for the resulting MW emission intensity, spectra shape, and polarization that can provide much closer correlation of simulations with observations in solar flares.