Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexey Antonov is active.

Publication


Featured researches published by Alexey Antonov.


Trends in Biochemical Sciences | 2014

Serine and glycine metabolism in cancer

Ivano Amelio; Francesca Cutruzzolà; Alexey Antonov; Massimiliano Agostini; Gerry Melino

Highlights • Serine and glycine are essential metabolites for cancer cells.• Serine and glycine provide precursors for macromolecules and antioxidant defence.• Metabolic enzymes of serine and glycine biosynthesis are upregulated in cancer.• Innovative anticancer therapy is aiming to target serine and glycine biosynthesis.


Proceedings of the National Academy of Sciences of the United States of America | 2015

p63 Sustains self-renewal of mammary cancer stem cells through regulation of Sonic Hedgehog signaling.

Elisa Maria Memmi; Anna Giulia Sanarico; Arianna Giacobbe; Angelo Peschiaroli; Valentina Frezza; Angelo Cicalese; Federica Pisati; Daniela Tosoni; Huiqing Zhou; Giovanni Tonon; Alexey Antonov; Gerry Melino; Pier Giuseppe Pelicci; Francesca Bernassola

Significance p63, the sister homolog of p53, is a master regulator of epithelial stem cell (SC) biology. p63 is indeed intimately implicated in the maintenance of the self-renewal capacity of stratified epithelia and their derivatives, including the mammary gland. Although the physiological role of p63 in normal mammary SCs is now acknowledged, proof of its implications in breast cancer SCs remains elusive. Here, we find that mammary cancer stem cells (CSCs) possess increased levels of p63 expression compared with normal progenitors. p63 promotes self-renewal and expansion of mammary CSCs and breast tumor growth in vivo. Additionally, this study provides a link between p63 and the Sonic Hedgehog signaling pathway in the regulation of breast cancer stemness. The predominant p63 isoform, ΔNp63, is a master regulator of normal epithelial stem cell (SC) maintenance. However, in vivo evidence of the regulation of cancer stem cell (CSC) properties by p63 is still limited. Here, we exploit the transgenic MMTV-ErbB2 (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2) mouse model of carcinogenesis to dissect the role of p63 in the regulation of mammary CSC self-renewal and breast tumorigenesis. ErbB2 tumor cells enriched for SC-like properties display increased levels of ΔNp63 expression compared with normal mammary progenitors. Down-regulation of p63 in ErbB2 mammospheres markedly restricts self-renewal and expansion of CSCs, and this action is fully independent of p53. Furthermore, transplantation of ErbB2 progenitors expressing shRNAs against p63 into the mammary fat pads of syngeneic mice delays tumor growth in vivo. p63 knockdown in ErbB2 progenitors diminishes the expression of genes encoding components of the Sonic Hedgehog (Hh) signaling pathway, a driver of mammary SC self-renewal. Remarkably, p63 regulates the expression of Sonic Hedgehog (Shh), GLI family zinc finger 2 (Gli2), and Patched1 (Ptch1) genes by directly binding to their gene regulatory regions, and eventually contributes to pathway activation. Collectively, these studies highlight the importance of p63 in maintaining the self-renewal potential of mammary CSCs via a positive modulation of the Hh signaling pathway.


Cell Death & Differentiation | 2013

MIRUMIR: an online tool to test microRNAs as biomarkers to predict survival in cancer using multiple clinical data sets

Alexey Antonov; Richard A. Knight; Gerry Melino; N. A. Barlev; P O Tsvetkov

MIRUMIR: an online tool to test microRNAs as biomarkers to predict survival in cancer using multiple clinical data sets


Oncogene | 2014

p73 regulates serine biosynthesis in cancer

Ivano Amelio; Elke K. Markert; Alessandro Rufini; Alexey Antonov; Berna S. Sayan; Paola Tucci; Massimiliano Agostini; T C Mineo; Arnold J. Levine; Gerry Melino

Activation of serine biosynthesis supports growth and proliferation of cancer cells. Human cancers often exhibit overexpression of phosphoglycerate dehydrogenase (PHGDH), the metabolic enzyme that catalyses the reaction that diverts serine biosynthesis from the glycolytic pathway. By refueling serine biosynthetic pathways, cancer cells sustain their metabolic requirements, promoting macromolecule synthesis, anaplerotic flux and ATP. Serine biosynthesis intersects glutaminolysis and together with this pathway provides substrates for production of antioxidant GSH. In human lung adenocarcinomas we identified a correlation between serine biosynthetic pathway and p73 expression. Metabolic profiling of human cancer cell line revealed that TAp73 activates serine biosynthesis, resulting in increased intracellular levels of serine and glycine, associated to accumulation of glutamate, tricarboxylic acid (TCA) anaplerotic intermediates and GSH. However, at molecular level p73 does not directly regulate serine metabolic enzymes, but transcriptionally controls a key enzyme of glutaminolysis, glutaminase-2 (GLS-2). p73, through GLS-2, favors conversion of glutamine in glutamate, which in turn drives the serine biosynthetic pathway. Serine and glutamate can be then employed for GSH synthesis, thus the p73-dependent metabolic switch enables potential response against oxidative stress. In knockdown experiment, indeed, TAp73 depletion completely abrogates cancer cell proliferation capacity in serine/glycine-deprivation, supporting the role of p73 to help cancer cells under metabolic stress. These findings implicate p73 in regulation of cancer metabolism and suggest that TAp73 influences glutamine and serine metabolism, affecting GSH synthesis and determining cancer pathogenesis.


Cell Death and Disease | 2013

miR-16 and miR-26a target checkpoint kinases Wee1 and Chk1 in response to p53 activation by genotoxic stress

Larissa Lezina; N. Purmessur; Alexey Antonov; Tatyana Ivanova; E. Karpova; K. Krishan; Mircea Ivan; Vasilisa Aksenova; Dmitri Tentler; A V Garabadgiu; Gerry Melino; Nickolai A. Barlev

The tumour suppressor p53 is a crucial regulator of cell cycle arrest and apoptosis by acting as a transcription factor to regulate a variety of genes. At least in part, this control is exerted by p53 via regulating expression of numerous microRNAs. We identified two abundantly expressed microRNAs, miR-16 and miR-26a, whose expression is regulated by p53 during the checkpoint arrest induced by the genotoxic drug, doxorubicin. Importantly, among the targets of these miRs are two critical checkpoint kinases, Chk1 and Wee1. The p53-dependent augmentation of miR-16 and miR-26a expression levels led to the cell cycle arrest of tumour cells in G1/S and increased apoptosis. Strikingly, the bioinformatics analysis of survival times for patients with breast and prostate cancers has revealed that co-expression of mir-16 and miR-26a correlated with a better survival outcome. Collectively, our data provide a novel mechanism whereby p53 represses Chk1 and Wee1 expression, at least partially, via upregulation of miR-16 and miR-26a and thus sensitizes tumour cells to genotoxic therapies.


Cell Death and Disease | 2014

Characterization of novel markers of senescence and their prognostic potential in cancer.

Mohammad Althubiti; Larissa Lezina; Samantha Carrera; Rebekah Jukes-Jones; Susan Giblett; Alexey Antonov; Nickolai A. Barlev; Gustavo Silva Saldanha; Catrin Pritchard; Kelvin Cain; Salvador Macip

Cellular senescence is a terminal differentiation state that has been proposed to have a role in both tumour suppression and ageing. This view is supported by the fact that accumulation of senescent cells can be observed in response to oncogenic stress as well as a result of normal organismal ageing. Thus, identifying senescent cells in in vivo and in vitro has an important diagnostic and therapeutic potential. The molecular pathways involved in triggering and/or maintaining the senescent phenotype are not fully understood. As a consequence, the markers currently utilized to detect senescent cells are limited and lack specificity. In order to address this issue, we screened for plasma membrane-associated proteins that are preferentially expressed in senescent cells. We identified 107 proteins that could be potential markers of senescence and validated 10 of them (DEP1, NTAL, EBP50, STX4, VAMP3, ARMX3, B2MG, LANCL1, VPS26A and PLD3). We demonstrated that a combination of these proteins can be used to specifically recognize senescent cells in culture and in tissue samples and we developed a straightforward fluorescence-activated cell sorting-based detection approach using two of them (DEP1 and B2MG). Of note, we found that expression of several of these markers correlated with increased survival in different tumours, especially in breast cancer. Thus, our results could facilitate the study of senescence, define potential new effectors and modulators of this cellular mechanism and provide potential diagnostic and prognostic tools to be used clinically.


Cell Death and Disease | 2014

DRUGSURV: a resource for repositioning of approved and experimental drugs in oncology based on patient survival information

Ivano Amelio; M Gostev; Richard A. Knight; Anne E. Willis; Gerry Melino; Alexey Antonov

The use of existing drugs for new therapeutic applications, commonly referred to as drug repositioning, is a way for fast and cost-efficient drug discovery. Drug repositioning in oncology is commonly initiated by in vitro experimental evidence that a drug exhibits anticancer cytotoxicity. Any independent verification that the observed effects in vitro may be valid in a clinical setting, and that the drug could potentially affect patient survival in vivo is of paramount importance. Despite considerable recent efforts in computational drug repositioning, none of the studies have considered patient survival information in modelling the potential of existing/new drugs in the management of cancer. Therefore, we have developed DRUGSURV; this is the first computational tool to estimate the potential effects of a drug using patient survival information derived from clinical cancer expression data sets. DRUGSURV provides statistical evidence that a drug can affect survival outcome in particular clinical conditions to justify further investigation of the drug anticancer potential and to guide clinical trial design. DRUGSURV covers both approved drugs (∼1700) as well as experimental drugs (∼5000) and is freely available at http://www.bioprofiling.de/drugsurv.


Oncogene | 2014

PPISURV: a novel bioinformatics tool for uncovering the hidden role of specific genes in cancer survival outcome

Alexey Antonov; M Krestyaninova; Richard A. Knight; I Rodchenkov; Gerry Melino; N. A. Barlev

Multiple clinical studies have correlated gene expression with survival outcome in cancer on a genome-wide scale. However, in many cases, no obvious correlation between expression of well-known tumour-related genes (that is, p53, p73 and p21) and survival rates of patients has been observed. This can be mainly explained by the complex molecular mechanisms involved in cancer, which mask the clinical relevance of a gene with multiple functions if only gene expression status is considered. As we demonstrate here, in many such cases, the expression of the gene interaction partners (gene ‘interactome’) correlates significantly with cancer survival and is indicative of the role of that gene in cancer. On the basis of this principle, we have implemented a free online datamining tool (http://www.bioprofiling.de/PPISURV). PPISURV automatically correlates expression of an input gene interactome with survival rates on >40 publicly available clinical expression data sets covering various tumours involving about 8000 patients in total. To derive the query gene interactome, PPISURV employs several public databases including protein–protein interactions, regulatory and signalling pathways and protein post-translational modifications.


Cell Cycle | 2013

Activation of miR200 by c-Myb depends on ZEB1 expression and miR200 promoter methylation

Marco Pieraccioli; Francesca Imbastari; Alexey Antonov; Gerry Melino; Giuseppe Raschellà

Tumor progression to metastasis is a complex, sequential process that requires proliferation, resistance to apoptosis, motility and invasion to colonize at distant sites. The acquisition of these features implies a phenotypic plasticity by tumor cells that must adapt to different conditions by modulating several signaling pathways1 during the journey to the final site of metastasis. Several transcription factors and microRNA play a role in tumor progression, but less is known about the control of their expression during this process. Here, we demonstrate by ectopic expression and gene silencing that the proto-oncogene c-Myb activates the expression of the 5 members of miR200 family (miR200b, miR200a, miR429, miR200c and miR141) that are involved in the control of epithelial-mesenchymal transition (EMT) and metastasis in many types of cancers. Transcriptional activation of miR200 by c-Myb occurs through binding to myb binding sites located in the promoter regions of miR200 genes on human chromosomes 1 and 12. Furthermore, when c-Myb and the transcriptional repressor ZEB1 are co-expressed, as at the onset EMT, the repression by ZEB1 prevails over the activation by c-Myb, and the expression of miR200 is inhibited. We also demonstrate that during EMT induced by TGF-β, the promoters of miR200 genes are methylated, and their transcription is repressed regardless of the presence of repressors such as ZEB1 and activators such as c-Myb. Finally, we find a correlation between the expression of c-Myb and that of four out of 5 miR200 in a data set of 207 breast cancer patients.


Cell Death and Disease | 2013

Caspase-1 is a novel target of p63 in tumor suppression.

Ivana Celardo; Francesca Grespi; Alexey Antonov; Francesca Bernassola; A V Garabadgiu; Gerry Melino; Ivano Amelio

p63 is a p53 family transcription factor, which besides unique roles in epithelial development, shares tumor suppressive activity with its homolog p53. The p63 gene has different transcriptional start sites, which generate two N-terminal isoforms (transactivation domain (TA)p63 and amino terminal truncated protein(ΔN)p63); in addition alternative splicing at the 5′-end give rise to at least five C-terminal isoforms. This complexity of gene structure has probably fostered the debate and controversy on p63 function in cancer, with TP63-harboring two distinctive promoters, codifying for the TAp63 and ΔNp63 isoforms, and having discrete functions. However, ΔNp63 also drives expression of target genes that have a relevant role in cancer and metastasis. In this study, we identified a novel p63 transcriptional target, caspase-1. Caspase-1 is proinflammatory caspase, which functions in tumor suppression. We show that both p63 isoforms promote caspase-1 expression by physical binding to its promoter. Consistent with our in vitro findings, we also identified a direct correlation between p63 and caspase-1 expression in human cancer data sets. In addition, survival estimation analysis demonstrated that functional interaction between p63 and caspase-1 represents a predictor of positive survival outcome in human cancers. Overall, our data report a novel p63 target gene involved in tumor suppression, and the clinical analysis underlines the biological relevance of this finding and suggests a further clinically predictive biomarker.

Collaboration


Dive into the Alexey Antonov's collaboration.

Top Co-Authors

Avatar

Gerry Melino

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivano Amelio

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. A. Barlev

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Anne E. Willis

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar

Francesca Bernassola

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Marco Pieraccioli

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vivien Landré

Medical Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge