Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexey Benyumov is active.

Publication


Featured researches published by Alexey Benyumov.


ACS Chemical Biology | 2009

Nontoxic chemical interdiction of the epithelial-to-mesenchymal transition by targeting cap-dependent translation

Brahma Ghosh; Alexey Benyumov; Phalguni Ghosh; Yan Jia; Svetlana Avdulov; Peter S. Dahlberg; Mark Peterson; Karen Smith; Vitaly A. Polunovsky; Peter B. Bitterman; Carston R. Wagner

Normal growth and development depends upon high fidelity regulation of cap-dependent translation initiation, a process that is usurped and redirected in cancer to mediate acquisition of malignant properties. The epithelial-to-mesenchymal transition (EMT) is a key translationally regulated step in the development of epithelial cancers and pathological tissue fibrosis. To date, no compounds targeting EMT have been developed. Here we report the synthesis of a novel class of histidine triad nucleotide binding protein (HINT)-dependent pronucleotides that interdict EMT by negatively regulating the association of eIF4E with the mRNA cap. Compound eIF4E inhibitor-1 potently inhibited cap-dependent translation in a dose-dependent manner in zebrafish embryos without causing developmental abnormalities and prevented eIF4E from triggering EMT in zebrafish ectoderm explants without toxicity. Metabolism studies with whole cell lysates demonstrated that the prodrug was rapidly converted into 7-BnGMP. Thus we have successfully developed the first nontoxic small molecule able to inhibit EMT, a key process in the development of epithelial cancer and tissue fibrosis, by targeting the interaction of eIF4E with the mRNA cap and demonstrated the tractability of zebrafish as a model organism for studying agents that modulate EMT. Our work provides strong motivation for the continued development of compounds designed to normalize cap-dependent translation as novel chemo-preventive agents and therapeutics for cancer and fibrosis.


Anti-Cancer Drugs | 2001

Vanadocenes as potent anti-proliferative agents disrupting mitotic spindle formation in cancer cells.

Christopher Navara; Alexey Benyumov; Alexei Vassilev; Rama Krishna Narla; Phalguni Ghosh; Fatih M. Uckun

We present experimental data which establish the organometallic compounds vanadocene dichloride (VDC) and vanadocene acetylacetonate (VDacac) as potent anti-proliferative agents. We first examined the effects of VDC and VDacac on the rapid embryonic cell division and development of Zebrafish. Both compounds were capable of causing cell division block at the 8-16 cell stage of embryonic development followed by total cell fusion and developmental arrest. We next examined the effect of VDC and VDacac on proliferation of human breast cancer and glioblastoma cell lines using MTT assays. VDC inhibited the proliferation of the breast cancer cell line BT-20 as well as the glioblastoma cell line U373 in a concentration-dependent fashion with IC50 values of 11.0, 14.9 and 18.6 μM, respectively. VDacac inhibited cellular proliferation with IC50 values of 9.1, 26.9 and 35.5 μM, respectively. Whereas in vehicle-treated control cancer cells mitotic spindles were organized as a bipolar microtubule array and the DNA was organized on a metaphase plate, vanadocene-treated cancer cells had aberrant monopolar mitotic structures where microtubules were detected only on one side of the chromosomes and the chromosomes were arranged in a circular pattern. In contrast to control cells which showed a single focus of γ-tubulin at each pole of the bipolar mitotic spindle, VDC- or VDacac-treated cells had two foci of γ-tubulin on the same side of the chromosomes resulting in a broad centrosome at one pole. All monopolar spindles examined had two foci of γ-tubulin labeling consistent with a mechanism in which the centrosomes duplicate but do not separate properly to form a bipolar spindle. These results provide unprecedented evidence that organometallic compounds can block cell division in human cancer cells by disrupting bipolar spindle formation. In accordance with these results vanadocene treatment caused an arrest at the G2/M phase of the cell cycle. This unique mechanism of anti-mitotic function warrants further development of vanadocene complexes as anti-cancer drugs.


American Journal of Pathology | 2014

Identification of a cell-of-origin for fibroblasts comprising the fibrotic reticulum in idiopathic pulmonary fibrosis

Hong Xia; Vidya Bodempudi; Alexey Benyumov; Polla Hergert; Damien Tank; Jeremy Herrera; Jeff Braziunas; Ola Larsson; Matthew Parker; Daniel Rossi; Karen Smith; Mark Peterson; Andrew H. Limper; Jose Jessurun; John E. Connett; David H. Ingbar; Sem H. Phan; Peter B. Bitterman; Craig A. Henke

Idiopathic pulmonary fibrosis (IPF) is a progressive disease of the middle aged and elderly with a prevalence of one million persons worldwide. The fibrosis spreads from affected alveoli into contiguous alveoli, creating a reticular network that leads to death by asphyxiation. Lung fibroblasts from patients with IPF have phenotypic hallmarks, distinguishing them from their normal counterparts: pathologically activated Akt signaling axis, increased collagen and α-smooth muscle actin expression, distinct gene expression profile, and ability to form fibrotic lesions in model organisms. Despite the centrality of these fibroblasts in disease pathogenesis, their origin remains uncertain. Here, we report the identification of cells in the lungs of patients with IPF with the properties of mesenchymal progenitors. In contrast to progenitors isolated from nonfibrotic lungs, IPF mesenchymal progenitor cells produce daughter cells manifesting the full spectrum of IPF hallmarks, including the ability to form fibrotic lesions in zebrafish embryos and mouse lungs, and a transcriptional profile reflecting these properties. Morphological analysis of IPF lung tissue revealed that mesenchymal progenitor cells and cells with the characteristics of their progeny comprised the fibrotic reticulum. These data establish that the lungs of patients with IPF contain pathological mesenchymal progenitor cells that are cells of origin for fibrosis-mediating fibroblasts. These fibrogenic mesenchymal progenitors and their progeny represent an unexplored target for novel therapies to interdict fibrosis.


Journal of Inorganic Biochemistry | 2001

X-ray structure, solution properties, and biological activity profile of vanadocene(IV) acetylacetonate complex, [VCp2(acac)](CF3SO3): a dual-function anti-cancer agent with anti-angiogenic and anti-mitotic properties

Phalguni Ghosh; Sutapa Ghosh; Christopher Navara; Rama Krishna Narla; Alexey Benyumov; Fatih M. Uckun

Abstract The structure of [V(η 5 -C 5 H 5 ) 2 (CH 3 C(O)CHC(O)CH 3 )](O 3 SCF 3 ) ( 1 ) (=[VCp 2 (acac)](O 3 SCF 3 )), a dual-function anti-cancer agent with anti-angiogenic and anti-mitotic properties, was determined by single-crystal X-ray diffraction. The geometry is well described as a pseudo-tetrahedral like structure with the centroids of the cyclopentadienyl rings and the two oxygen atoms of the acetylacetonate ring in the ancillary positions of the central vanadium (IV) atom. The bisector of the V(acac) fragment deviates from the C 2 axis of the ligand framework by only 4°, compared to a deviation of 7° for the V(acac) fragment in the tetramethylethano-bridged vanadocene acetyl acetonate complex. Crystal data for 1 : space group, P 2 1 / c ; a =7.5544(9) A, b =14.936(2) A, c =16.193(2) A, β =102.901(2)°, V =1781.0(4) A 3 ; Z =4; R =0.0506 for 2310 reflections with I >2 σ ( I ). This report also details the electron paramagnetic resonance, UV/Vis spectroscopy, electrochemical properties and the biological activity profile of this potent anti-cancer agent.


Scientific Reports | 2016

Transforming Growth Factor-β1 Induced Epithelial Mesenchymal Transition is blocked by a chemical antagonist of translation factor eIF4E.

Karen Smith; Beiyun Zhou; Svetlana Avdulov; Alexey Benyumov; Mark Peterson; Yixin Liu; Aniekan Okon; Polla Hergert; Jeff Braziunas; Carston R. Wagner; Zea Borok; Peter B. Bitterman

The epithelial to mesenchymal transition (EMT) imparts disease-defining properties to epithelial cells in cancer and organ fibrosis. Prior studies identify EMT control points at the level of transcription and translation, and indicate that activation of translation initiation factor 4E (eIF4E) is involved in the mechanisms coordinating these two levels of control. Here we show that 4Ei-1, a specific chemical antagonist of the eIF4E-mRNA cap interaction, potently inhibits transforming growth factor beta 1 (TGF-β1) mediated EMT in lung epithelial cells. Upon treatment with TGF-β1, we observed a rapid recruitment of Snail1 mRNA into the actively translated polysome pool accompanied by accumulation of the EMT transcription factor Snail1 in the nucleus. 4Ei-1 blocks ribosome recruitment to the Snail1 transcript thereby preventing accumulation of the Snail1 protein in the nucleus. Our findings establish an obligatory role for upstream translational control of downstream Snail1-mediated transcriptional events in TGF-β1 induced EMT, and provide proof of concept for efforts to pharmacologically modulate the eIF4E-cap interaction as a means to inhibit pathological EMT in the setting of cancer and organ fibrosis.


Journal of Clinical Investigation | 2017

Calcium-binding protein S100A4 confers mesenchymal progenitor cell fibrogenicity in idiopathic pulmonary fibrosis

Hong Xia; Adam Gilbertsen; Jeremy Herrera; Emilian Racila; Karen Smith; Mark Peterson; Timothy J. Griffin; Alexey Benyumov; Libang Yang; Peter B. Bitterman; Craig A. Henke

Idiopathic pulmonary fibrosis (IPF) is a progressive disease with a prevalence of 1 million persons worldwide. The fibrosis spreads from affected alveoli into contiguous alveoli and leads to death by asphyxiation. We previously discovered that the IPF lung harbors fibrogenic mesenchymal progenitor cells (MPCs) that serve as a cell of origin for disease-mediating myofibroblasts. In a prior genomewide transcriptional analysis, we found that IPF MPCs displayed increased expression of S100 calcium-binding A4 (S100A4), a protein linked to cancer cell proliferation and invasiveness. Here, we have examined whether S100A4 mediates MPC fibrogenicity. Ex vivo analysis revealed that IPF MPCs had increased levels of nuclear S100A4, which interacts with L-isoaspartyl methyltransferase to promote p53 degradation and MPC self-renewal. In vivo, injection of human IPF MPCs converted a self-limited bleomycin-induced mouse model of lung fibrosis to a model of persistent fibrosis in an S100A4-dependent manner. S100A4 gain of function was sufficient to confer fibrotic properties to non-IPF MPCs. In IPF tissue, fibroblastic foci contained cells expressing Ki67 and the MPC markers SSEA4 and S100A4. The expression colocalized in an interface region between myofibroblasts in the focus core and normal alveolar structures, defining this region as an active fibrotic front. Our findings indicate that IPF MPCs are intrinsically fibrogenic and that S100A4 confers MPCs with fibrogenicity.


Zebrafish | 2012

A Novel Zebrafish Embryo Xenotransplantation Model to Study Primary Human Fibroblast Motility in Health and Disease

Alexey Benyumov; Polla Hergert; Jeremy Herrera; Mark Peterson; Craig A. Henke; Peter B. Bitterman

Fibroblasts have a central role in the maintenance of tissue homeostasis and repair after injury. Currently, there are no tractable, cost-effective model systems for studying the biology of human fibroblasts in vivo. Here we demonstrate that primary human fibroblasts survive transplantation into zebrafish embryos. Transplanted cells migrate and proliferate, but do not integrate into host tissues. We used this system to study the intrinsic motility of lung fibroblasts from a prototype fibrotic lung disease, idiopathic pulmonary fibrosis (IPF). IPF fibroblasts displayed a significantly higher level of motility than did fibroblasts from nonfibrotic lungs. This is the first in vivo examination of primary human lung fibroblast motility in health and disease using zebrafish models.


Cancer Research | 2015

eIF4E Threshold Levels Differ in Governing Normal and Neoplastic Expansion of Mammary Stem and Luminal Progenitor Cells

Svetlana Avdulov; Jeremy Herrera; Karen Smith; Mark Peterson; Jose Gomez-Garcia; Thomas C. Beadnell; Kathryn L. Schwertfeger; Alexey Benyumov; J. Carlos Manivel; Shunan Li; Anja Katrin Bielinsky; Douglas Yee; Peter B. Bitterman; Vitaly A. Polunovsky

Translation initiation factor eIF4E mediates normal cell proliferation, yet induces tumorigenesis when overexpressed. The mechanisms by which eIF4E directs such distinct biologic outputs remain unknown. We found that mouse mammary morphogenesis during pregnancy and lactation is accompanied by increased cap-binding capability of eIF4E and activation of the eIF4E-dependent translational apparatus, but only subtle oscillations in eIF4E abundance. Using a transgenic mouse model engineered so that lactogenic hormones stimulate a sustained increase in eIF4E abundance in stem/progenitor cells of lactogenic mammary epithelium during successive pregnancy/lactation cycles, eIF4E overexpression increased self-renewal, triggered DNA replication stress, and induced formation of premalignant and malignant lesions. Using complementary in vivo and ex vivo approaches, we found that increasing eIF4E levels rescued cells harboring oncogenic c-Myc or H-RasV12 from DNA replication stress and oncogene-induced replication catastrophe. Our findings indicate that distinct threshold levels of eIF4E govern its biologic output in lactating mammary glands and that eIF4E overexpression in the context of stem/progenitor cell population expansion can initiate malignant transformation by enabling cells to evade DNA damage checkpoints activated by oncogenic stimuli. Maintaining eIF4E levels below its proneoplastic threshold is an important anticancer defense in normal cells, with important implications for understanding pregnancy-associated breast cancer.


Molecular Pharmaceutics | 2013

Targeted Delivery of Antisense Oligonucleotides by Chemically Self-Assembled Nanostructures

Amit Gangar; Adrian Fegan; Sidath C. Kumarapperuma; Peter Huynh; Alexey Benyumov; Carston R. Wagner

Synthetic nucleic acids have shown great potential in the treatment of various diseases. Nevertheless, the selective delivery to a target tissue has proved challenging. The coupling of nucleic acids to targeting peptides, proteins, and antibodies has been explored as an approach for their selective tissue delivery. Nevertheless, the preparation of covalently coupled peptides and proteins that can also undergo intracellular release as well as deliver more than one copy of the nucleic acid has proved challenging. Recently, we have developed a novel method for the rapid noncovalent conjugation of nucleic acids to targeting single chain antibodies (scFv) using chemically self-assembled nanostructures (CSANs). CSANs have been prepared by the self-assembly of two dihydrofolate reductase molecules (DHFR(2)) and a targeting scFv in the presence of bis-methotrexate (bis-MTX). The valency of the nanorings can be tuned from one to eight subunits, depending on the length and composition of the linker between the dihydrofolate reductase molecules. To explore their potential for the therapeutic delivery of nucleic acids as well as the ability to expand the capabilities of CSANs by incorporating smaller cyclic targeting peptides, we prepared DHFR(2) proteins fused through a flexible peptide linker to cyclic-RGD, which targets αvβ3 integrins, and a bis-MTX chemical dimerizer linked to an antisense oligonucleotide (bis-MTX-ASO) that has been shown to silence expression of eukaryotic translation initiation factor 4E (eIF4E). Monomeric and multimeric cRGD-CSANs were then prepared with bis-MTX-ASO and shown to undergo endocytosis in the breast cancer cell line, MDA-MB-231, which overexpresses αvβ3. The bis-MTX-ASO was shown to undergo endosomal escape resulting in the knock down of eIF4E with at least the same efficiency as ASO delivered by oligofectamine. The modularity, flexibility, and common method of conjugation may prove to be a useful general approach for the targeted delivery of ASOs, as well as other nucleic acids to cells.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2018

IL-8 mediates idiopathic pulmonary fibrosis mesenchymal progenitor cell fibrogenicity

Libang Yang; Jeremy Herrera; Adam Gilbertsen; Hong Xia; Karen Smith; Alexey Benyumov; Peter B. Bitterman; Craig A. Henke

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease, but the mechanisms driving progression remain incompletely defined. We previously reported that the IPF lung harbors fibrogenic mesenchymal progenitor cells (MPCs), which serve as a cell of origin for IPF fibroblasts. Proliferating IPF MPCs are located at the periphery of fibroblastic foci in an active cellular front at the interface between the myofibroblast-rich focus core and adjacent normal alveolar structures. Among a large set of genes that distinguish IPF MPCs from their control counterparts, we identified IL-8 as a candidate mediator of IPF MPC fibrogenicity and driver of fibrotic progression. IPF MPCs and their progeny displayed increased steady-state levels of IL-8 and its cognate receptor CXCR1 and secreted more IL-8 than did controls. IL-8 functioned in an autocrine manner promoting IPF MPC self-renewal and the proliferation and motility of IPF MPC progeny. Secreted IL-8 also functioned in a paracrine manner stimulating macrophage migration. Analysis of IPF lung tissue demonstrated codistribution of IPF MPCs with activated macrophages in the active cellular front of the fibroblastic focus. These findings indicate that IPF MPC-derived IL-8 is capable of expanding the mesenchymal cell population and recruiting activated macrophages cells to actively evolving fibrotic lesions.

Collaboration


Dive into the Alexey Benyumov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen Smith

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Xia

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge