Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexey Chernikov is active.

Publication


Featured researches published by Alexey Chernikov.


Physical Review B | 2014

Measurement of the optical dielectric function of transition metal dichalcogenide monolayers: MoS2, MoSe2, WS2 and WSe2

Yilei Li; Alexey Chernikov; Xian Zhang; Albert F. Rigosi; Heather M. Hill; Arend van der Zande; Daniel Chenet; En Min Shih; James Hone; Tony F. Heinz

This chapter presents the complex in-plane dielectric function from 1.5 to 3 eV for monolayers of four transition metal dichalcogenides: MoSe2, WSe2, MoS2, and WS2. The results were obtained from optical reflection spectra using a Kramers–Kronig constrained variational analysis. From the inferred dielectric functions, we obtain the absolute absorbance of the monolayers. We also provide a comparison of the dielectric function for the monolayers with the respective bulk materials [1].


Nano Letters | 2014

Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist.

Arend van der Zande; Jens Kunstmann; Alexey Chernikov; Daniel Chenet; Yumeng You; Xiaoxiao Zhang; Pinshane Y. Huang; Timothy C. Berkelbach; Lei Wang; Fan Zhang; Mark S. Hybertsen; David A. Muller; David R. Reichman; Tony F. Heinz; James Hone

Molybdenum disulfide bilayers with well-defined interlayer twist angle were constructed by stacking single-crystal monolayers. Varying interlayer twist angle results in strong tuning of the indirect optical transition energy and second-harmonic generation and weak tuning of direct optical transition energies and Raman mode frequencies. Electronic structure calculations show the interlayer separation changes with twist due to repulsion between sulfur atoms, resulting in shifts of the indirect optical transition energies. These results show that interlayer alignment is a crucial variable in tailoring the properties of two-dimensional heterostructures.


Nano Letters | 2015

Observation of Excitonic Rydberg States in Monolayer MoS2 and WS2 by Photoluminescence Excitation Spectroscopy

Heather M. Hill; Albert F. Rigosi; Cyrielle Roquelet; Alexey Chernikov; Timothy C. Berkelbach; David R. Reichman; Mark S. Hybertsen; Louis E. Brus; Tony F. Heinz

We have identified excited exciton states in monolayers of MoS2 and WS2 supported on fused silica by means of photoluminescence excitation spectroscopy. In monolayer WS2, the positions of the excited A exciton states imply an exciton binding energy of 0.32 eV. In monolayer MoS2, excited exciton transitions are observed at energies of 2.24 and 2.34 eV. Assigning these states to the B exciton Rydberg series yields an exciton binding energy of 0.44 eV.


2D Materials | 2016

2D materials advances: From large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications

Zhong Lin; Amber McCreary; Natalie Briggs; Shruti Subramanian; Kehao Zhang; Yifan Sun; Xufan Li; Nicholas J. Borys; Hongtao Yuan; Susan K. Fullerton-Shirey; Alexey Chernikov; Hui Zhao; Stephen McDonnell; Aaron M. Lindenberg; Kai Xiao; Brian J. LeRoy; Marija Drndic; James C. M. Hwang; Jiwoong Park; Manish Chhowalla; Raymond E. Schaak; Ali Javey; Mark C. Hersam; Joshua A. Robinson; Mauricio Terrones

Author(s): Lin, Z; McCreary, A; Briggs, N; Subramanian, S; Zhang, K; Sun, Y; Li, X; Borys, NJ; Yuan, H; Fullerton-Shirey, SK; Chernikov, A; Zhao, H; McDonnell, S; Lindenberg, AM; Xiao, K; Le Roy, BJ; Drndic, M; Hwang, JCM; Park, J; Chhowalla, M; Schaak, RE; Javey, A; Hersam, MC; Robinson, J; Terrones, M | Abstract:


Physical Review Letters | 2015

Electrical Tuning of Exciton Binding Energies in Monolayer WS2

Alexey Chernikov; Arend van der Zande; Heather M. Hill; Albert F. Rigosi; Ajanth Velauthapillai; James Hone; Tony F. Heinz

We demonstrate continuous tuning of the exciton binding energy in monolayer WS_{2} by means of an externally applied voltage in a field-effect transistor device. Using optical spectroscopy, we monitor the ground and excited excitonic states as a function of gate voltage and track the evolution of the quasiparticle band gap. The observed decrease of the exciton binding energy over the range of about 100 meV, accompanied by the renormalization of the quasiparticle band gap, is associated with screening of the Coulomb interaction by the electrically injected free charge carriers at densities up to 8×10^{12} cm^{-2}. Complete ionization of the excitons due to the electrical doping is estimated to occur at a carrier density of several 10^{13} cm^{-2}.


Nano Letters | 2015

Probing Interlayer Interactions in Transition Metal Dichalcogenide Heterostructures by Optical Spectroscopy: MoS2/WS2 and MoSe2/WSe2

Albert F. Rigosi; Heather M. Hill; Yilei Li; Alexey Chernikov; Tony F. Heinz

We have applied optical absorption spectroscopy to investigate van der Waals heterostructures formed of pairs of monolayer transition metal dichalcogenide crystals, choosing MoS2/WS2 and MoSe2/WSe2 as test cases. In the heterostructure spectra, we observe a significant broadening of the excitonic transitions compared to the corresponding features in the isolated layers. The broadening is interpreted as a lifetime effect arising from decay of excitons initially created in either layer through charge transfer processes expected for a staggered band alignment. The measured spectral broadening of 20 meV - 35 meV implies lifetimes for charge separation of the near band-edge A and B excitons in the range of 20-35 fs. Higher-lying transitions exhibit still greater broadening.


Nature Communications | 2016

Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides

Malte Selig; Gunnar Berghäuser; Archana Raja; Philipp Nagler; Christian Schüller; Tony F. Heinz; Tobias Korn; Alexey Chernikov; Ermin Malic; Andreas Knorr

Atomically thin transition metal dichalcogenides are direct-gap semiconductors with strong light–matter and Coulomb interactions. The latter accounts for tightly bound excitons, which dominate their optical properties. Besides the optically accessible bright excitons, these systems exhibit a variety of dark excitonic states. They are not visible in the optical spectra, but can strongly influence the coherence lifetime and the linewidth of the emission from bright exciton states. Here, we investigate the microscopic origin of the excitonic coherence lifetime in two representative materials (WS2 and MoSe2) through a study combining microscopic theory with spectroscopic measurements. We show that the excitonic coherence lifetime is determined by phonon-induced intravalley scattering and intervalley scattering into dark excitonic states. In particular, in WS2, we identify exciton relaxation processes involving phonon emission into lower-lying dark states that are operative at all temperatures.


Journal of the American Chemical Society | 2014

Multiphonon Relaxation Slows Singlet Fission in Crystalline Hexacene

Erik Busby; Timothy C. Berkelbach; Bharat Kumar; Alexey Chernikov; Yu Zhong; Htay Hlaing; X.-Y. Zhu; Tony F. Heinz; Mark S. Hybertsen; David R. Reichman; Colin Nuckolls; Omer Yaffe

Singlet fission, the conversion of a singlet excitation into two triplet excitations, is a viable route to improved solar-cell efficiency. Despite active efforts to understand the singlet fission mechanism, which would aid in the rational design of new materials, a comprehensive understanding of mechanistic principles is still lacking. Here, we present the first study of singlet fission in crystalline hexacene which, together with tetracene and pentacene, enables the elucidation of mechanistic trends. We characterize the static and transient optical absorption and combine our findings with a theoretical analysis of the relevant electronic couplings and rates. We find a singlet fission time scale of 530 fs, which is orders of magnitude faster than tetracene (10-100 ps) but significantly slower than pentacene (80-110 fs). We interpret this increased time scale as a multiphonon relaxation effect originating from a large exothermicity and present a microscopic theory that quantitatively reproduces the rates in the acene family.


Nature Communications | 2016

Trion fine structure and coupled spin–valley dynamics in monolayer tungsten disulfide

Gerd Plechinger; Philipp Nagler; Ashish Arora; Robert Schmidt; Alexey Chernikov; Andrés Granados del Águila; Peter C. M. Christianen; Rudolf Bratschitsch; Christian Schüller; Tobias Korn

Monolayer transition-metal dichalcogenides have recently emerged as possible candidates for valleytronic applications, as the spin and valley pseudospin are directly coupled and stabilized by a large spin splitting. The optical properties of these two-dimensional crystals are dominated by tightly bound electron–hole pairs (excitons) and more complex quasiparticles such as charged excitons (trions). Here we investigate monolayer WS2 samples via photoluminescence and time-resolved Kerr rotation. In photoluminescence and in energy-dependent Kerr rotation measurements, we are able to resolve two different trion states, which we interpret as intravalley and intervalley trions. Using time-resolved Kerr rotation, we observe a rapid initial valley polarization decay for the A exciton and the trion states. Subsequently, we observe a crossover towards exciton–exciton interaction-related dynamics, consistent with the formation and decay of optically dark A excitons. By contrast, resonant excitation of the B exciton transition leads to a very slow decay of the Kerr signal.


Nature Communications | 2017

Coulomb engineering of the bandgap and excitons in two-dimensional materials

Archana Raja; Andrey Chaves; Jaeeun Yu; Ghidewon Arefe; Heather M. Hill; Albert F. Rigosi; Timothy C. Berkelbach; Philipp Nagler; Christian Schüller; Tobias Korn; Colin Nuckolls; James Hone; Louis E. Brus; Tony F. Heinz; David R. Reichman; Alexey Chernikov

The ability to control the size of the electronic bandgap is an integral part of solid-state technology. Atomically thin two-dimensional crystals offer a new approach for tuning the energies of the electronic states based on the unusual strength of the Coulomb interaction in these materials and its environmental sensitivity. Here, we show that by engineering the surrounding dielectric environment, one can tune the electronic bandgap and the exciton binding energy in monolayers of WS2 and WSe2 by hundreds of meV. We exploit this behaviour to present an in-plane dielectric heterostructure with a spatially dependent bandgap, as an initial step towards the creation of diverse lateral junctions with nanoscale resolution.

Collaboration


Dive into the Alexey Chernikov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philipp Nagler

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar

Tobias Korn

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge