Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexey Kozlenkov is active.

Publication


Featured researches published by Alexey Kozlenkov.


Nature Neuroscience | 2012

HDAC2 regulates atypical antipsychotic responses through the modulation of mGlu2 promoter activity.

Mitsumasa Kurita; Terrell Holloway; Aintzane García-Bea; Alexey Kozlenkov; Allyson K. Friedman; José L. Moreno; Mitra Heshmati; Sam A. Golden; Pamela J. Kennedy; Nagahide Takahashi; David M. Dietz; Giuseppe Mocci; Ane M. Gabilondo; James B. Hanks; Adrienne Umali; Luis F. Callado; Amelia L. Gallitano; Rachael L. Neve; Li Shen; Joseph D. Buxbaum; Ming-Hu Han; Eric J. Nestler; J. Javier Meana; Scott J. Russo; Javier González-Maeso

Histone deacetylases (HDACs) compact chromatin structure and repress gene transcription. In schizophrenia, clinical studies demonstrate that HDAC inhibitors are efficacious when given in combination with atypical antipsychotics. However, the molecular mechanism that integrates a better response to antipsychotics with changes in chromatin structure remains unknown. Here we found that chronic atypical antipsychotics downregulated the transcription of metabotropic glutamate 2 receptor (mGlu2, also known as Grm2), an effect that was associated with decreased histone acetylation at its promoter in mouse and human frontal cortex. This epigenetic change occurred in concert with a serotonin 5-HT2A receptor–dependent upregulation and increased binding of HDAC2 to the mGlu2 promoter. Virally mediated overexpression of HDAC2 in frontal cortex decreased mGlu2 transcription and its electrophysiological properties, thereby increasing psychosis-like behavior. Conversely, HDAC inhibitors prevented the repressive histone modifications induced at the mGlu2 promoter by atypical antipsychotics, and augmented their therapeutic-like effects. These observations support the view of HDAC2 as a promising new target for schizophrenia treatment.


Nature Neuroscience | 2015

The PsychENCODE project

Schahram Akbarian; Chunyu Liu; James A. Knowles; Flora M. Vaccarino; Peggy J. Farnham; Gregory E. Crawford; Andrew E. Jaffe; Dalila Pinto; Stella Dracheva; Daniel H. Geschwind; Jonathan Mill; Angus C. Nairn; Alexej Abyzov; Sirisha Pochareddy; Shyam Prabhakar; Sherman M. Weissman; Patrick F. Sullivan; Matthew W. State; Zhiping Weng; Mette A. Peters; Kevin P. White; Mark Gerstein; Anahita Amiri; Chris Armoskus; Allison E. Ashley-Koch; Taejeong Bae; Andrea Beckel-Mitchener; Benjamin P. Berman; Gerhard A. Coetzee; Gianfilippo Coppola

Recent research on disparate psychiatric disorders has implicated rare variants in genes involved in global gene regulation and chromatin modification, as well as many common variants located primarily in regulatory regions of the genome. Understanding precisely how these variants contribute to disease will require a deeper appreciation for the mechanisms of gene regulation in the developing and adult human brain. The PsychENCODE project aims to produce a public resource of multidimensional genomic data using tissue- and cell type–specific samples from approximately 1,000 phenotypically well-characterized, high-quality healthy and disease-affected human post-mortem brains, as well as functionally characterize disease-associated regulatory elements and variants in model systems. We are beginning with a focus on autism spectrum disorder, bipolar disorder and schizophrenia, and expect that this knowledge will apply to a wide variety of psychiatric disorders. This paper outlines the motivation and design of PsychENCODE.


Nucleic Acids Research | 2016

Substantial DNA methylation differences between two major neuronal subtypes in human brain

Alexey Kozlenkov; Minghui Wang; Panos Roussos; Sergei Rudchenko; Mihaela Barbu; Marina Bibikova; Brandy Klotzle; Andrew J. Dwork; Bin Zhang; Yasmin L. Hurd; Eugene V. Koonin; Michael Wegner; Stella Dracheva

The brain is built from a large number of cell types which have been historically classified using location, morphology and molecular markers. Recent research suggests an important role of epigenetics in shaping and maintaining cell identity in the brain. To elucidate the role of DNA methylation in neuronal differentiation, we developed a new protocol for separation of nuclei from the two major populations of human prefrontal cortex neurons—GABAergic interneurons and glutamatergic (GLU) projection neurons. Major differences between the neuronal subtypes were revealed in CpG, non-CpG and hydroxymethylation (hCpG). A dramatically greater number of undermethylated CpG sites in GLU versus GABA neurons were identified. These differences did not directly translate into differences in gene expression and did not stem from the differences in hCpG methylation, as more hCpG methylation was detected in GLU versus GABA neurons. Notably, a comparable number of undermethylated non-CpG sites were identified in GLU and GABA neurons, and non-CpG methylation was a better predictor of subtype-specific gene expression compared to CpG methylation. Regions that are differentially methylated in GABA and GLU neurons were significantly enriched for schizophrenia risk loci. Collectively, our findings suggest that functional differences between neuronal subtypes are linked to their epigenetic specification.


Neuropsychopharmacology | 2013

The HIV Antiretroviral Drug Efavirenz has LSD-Like Properties

Michael B. Gatch; Alexey Kozlenkov; Ren Qi Huang; Wenjuan Yang; Jacques D. Nguyen; Javier González-Maeso; Kenner C. Rice; Glenn H. Dillon; Michael J. Forster; John A. Schetz

Anecdotal reports have surfaced concerning misuse of the HIV antiretroviral medication efavirenz ((4S)-6-chloro-4-(2-cyclopropylethynyl)-4-(trifluoromethyl)-2,4-dihydro-1H-3,1-benzoxazin-2-one) by HIV patients and non-infected teens who crush the pills and smoke the powder for its psychoactive effects. Molecular profiling of the receptor pharmacology of efavirenz pinpointed interactions with multiple established sites of action for other known drugs of abuse including catecholamine and indolamine transporters, and GABAA and 5-HT2A receptors. In rodents, interaction with the 5-HT2A receptor, a primary site of action of lysergic acid diethylamine (LSD), appears to dominate efavirenz’s behavioral profile. Both LSD and efavirenz reduce ambulation in a novel open-field environment. Efavirenz occasions drug-lever responding in rats discriminating LSD from saline, and this effect is abolished by selective blockade of the 5-HT2A receptor. Similar to LSD, efavirenz induces head-twitch responses in wild-type, but not in 5-HT2A-knockout, mice. Despite having GABAA-potentiating effects (like benzodiazepines and barbiturates), and interactions with dopamine transporter, serotonin transporter, and vesicular monoamine transporter 2 (like cocaine and methamphetamine), efavirenz fails to maintain responding in rats that self-administer cocaine, and it fails to produce a conditioned place preference. Although its molecular pharmacology is multifarious, efavirenz’s prevailing behavioral effect in rodents is consistent with LSD-like activity mediated via the 5-HT2A receptor. This finding correlates, in part, with the subjective experiences in humans who abuse efavirenz and with specific dose-dependent adverse neuropsychiatric events, such as hallucinations and night terrors, reported by HIV patients taking it as a medication.


Science Signaling | 2016

Allosteric signaling through an mGlu2 and 5-HT2A heteromeric receptor complex and its potential contribution to schizophrenia

José L. Moreno; Patricia Miranda-Azpiazu; Aintzane García-Bea; Jason Younkin; Meng Cui; Alexey Kozlenkov; Ariel Ben-Ezra; Georgios Voloudakis; Amanda K. Fakira; Lia Baki; Yongchao Ge; Anastasios Georgakopoulos; Jose A. Morón; Graeme Milligan; Juan F. López-Giménez; Nikolaos K. Robakis; Diomedes E. Logothetis; J. Javier Meana; Javier González-Maeso

Stimulation of one partner in a heteromeric GPCR complex in the brain activates the other partner. One to bind, one to signal In addition to forming homodimers and heterodimers, G protein–coupled receptors (GPCRs) can form multiprotein complexes (heteromers) with other GPCRs. For example, the metabotropic glutamate receptor mGlu2, which couples to Gi/o proteins, and the 5-HT2A serotonin receptor, which couples to Gq/11, form heteromeric complexes. Moreno et al. performed a structure-function analysis to determine the signaling properties of these heteromers. Stimulation of cells expressing mGlu2–5-HT2A heteromers with an mGlu2 agonist led to Gq/11-dependent signaling by 5-HT2A, a response lacking in cells from 5-HT2A–deficient mice. Furthermore, the analysis of postmortem brains of schizophrenia patients indicated less mGlu2-dependent Gq/11 signaling compared to that in normal brains, suggesting that these heteromeric complexes may be dysregulated in disease. Heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptors (GPCRs) can form multiprotein complexes (heteromers), which can alter the pharmacology and functions of the constituent receptors. Previous findings demonstrated that the Gq/11-coupled serotonin 5-HT2A receptor and the Gi/o-coupled metabotropic glutamate 2 (mGlu2) receptor—GPCRs that are involved in signaling alterations associated with psychosis—assemble into a heteromeric complex in the mammalian brain. In single-cell experiments with various mutant versions of the mGlu2 receptor, we showed that stimulation of cells expressing mGlu2–5-HT2A heteromers with an mGlu2 agonist led to activation of Gq/11 proteins by the 5-HT2A receptors. For this crosstalk to occur, one of the mGlu2 subunits had to couple to Gi/o proteins, and we determined the relative location of the Gi/o-contacting subunit within the mGlu2 homodimer of the heteromeric complex. Additionally, mGlu2-dependent activation of Gq/11, but not Gi/o, was reduced in the frontal cortex of 5-HT2A knockout mice and was reduced in the frontal cortex of postmortem brains from schizophrenic patients. These findings offer structural insights into this important target in molecular psychiatry.


Molecular Pharmacology | 2013

Repressive epigenetic changes at the mGlu2 promoter in frontal cortex of 5-HT2A knockout mice.

Mitsumasa Kurita; José L. Moreno; Terrell Holloway; Alexey Kozlenkov; Giuseppe Mocci; Aintzane García-Bea; James B. Hanks; Rachael L. Neve; Eric J. Nestler; Scott J. Russo; Javier González-Maeso

Serotonin 5-HT2A and metabotropic glutamate 2 (mGlu2) are G protein–coupled receptors suspected in the pathophysiology of psychiatric disorders, such as schizophrenia, depression, and suicide. Previous findings demonstrate that mGlu2 mRNA expression is down-regulated in brain cortical regions of 5-HT2A knockout (KO) mice. However, the molecular mechanism responsible for this alteration remains unknown. We show here repressive epigenetic changes at the promoter region of the mGlu2 gene in frontal cortex of 5-HT2A-KO mice. Disruption of 5-HT2A receptor-dependent signaling in mice was associated with decreased acetylation of histone H3 (H3ac) and H4 (H4ac) and increased tri-methylation of histone H3 at lysine 27 (H3K27me3) at the mGlu2 promoter, epigenetic changes that correlate with transcriptional repression. Neither methylation of histone H3 at lysine 4 (H3K4me1/2/3) nor tri-methylation of histone H3 at lysine 9 (H3K9me3) was affected. We found that Egr1, a transcription factor in which promoter activity was positively regulated by the 5-HT2A receptor agonist 4-bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine hydrobromide, binds less to the mGlu2 promoter in frontal cortex of 5-HT2A-KO, compared with wild-type mice. Furthermore, expression of mGlu2 was increased by viral-mediated gene transfer of FLAG-tagged Egr1 in mouse frontal cortex. Together, these observations suggest that 5-HT2A receptor–dependent signaling epigenetically affects mGlu2 transcription in mouse frontal cortex.


Human Molecular Genetics | 2014

A unique gene expression signature associated with serotonin 2C receptor RNA editing in the prefrontal cortex and altered in suicide

Antonio Di Narzo; Alexey Kozlenkov; Panos Roussos; Ke Hao; Yasmin L. Hurd; David A. Lewis; Etienne Sibille; Larry J. Siever; Eugene V. Koonin; Stella Dracheva

Editing of the pre-mRNA for the serotonin receptor 2C (5-HT2CR) by site-specific adenosine deamination (A-to-I pre-mRNA editing) substantially increases the functional plasticity of this key neurotransmitter receptor and is thought to contribute to homeostatic mechanisms in neurons. 5-HT2CR mRNA editing generates up to 24 different receptor isoforms. The extent of editing correlates with 5-HT2CR functional activity: more highly edited isoforms exhibit the least function. Altered 5-HT2CR editing has been reported in postmortem brains of suicide victims. We report a comparative analysis of the connections among 5-HT2CR editing, genome-wide gene expression and DNA methylation in suicide victims, individuals with major depressive disorder and non-psychiatric controls. The results confirm previous findings of an overrepresentation of highly edited mRNA variants (which encode hypoactive 5-HT2CR receptors) in the brains of suicide victims. A large set of genes for which the expression level is associated with editing was detected. This signature set of editing-associated genes is significantly enriched for genes that are involved in synaptic transmission, genes that are preferentially expressed in neurons, and genes whose expression is correlated with the level of DNA methylation. Notably, we report that the link between 5-HT2CR editing and gene expression is disrupted in suicide victims. The results suggest that the postulated homeostatic function of 5-HT2CR editing is dysregulated in individuals who committed suicide.


Scientific Reports | 2015

Decrease of mRNA Editing after Spinal Cord Injury is Caused by Down-regulation of ADAR2 that is Triggered by Inflammatory Response

Antonio Di Narzo; Alexey Kozlenkov; Yongchao Ge; Bin Zhang; Leo Sanelli; Zacnicte May; Yanqing Li; Karim Fouad; Christopher Cardozo; Eugene V. Koonin; David J. Bennett; Stella Dracheva

We recently showed that spinal cord injury (SCI) leads to a decrease in mRNA editing of serotonin receptor 2C (5-HT2CR) contributing to post-SCI spasticity. Here we study post-SCI mRNA editing and global gene expression using massively parallel sequencing. Evidence is presented that the decrease in 5-HT2CR editing is caused by down-regulation of adenosine deaminase ADAR2 and that editing of at least one other ADAR2 target, potassium channel Kv1.1, is decreased after SCI. Bayesian network analysis of genome-wide transcriptome data indicates that down-regulation of ADAR2 (1) is triggered by persistent inflammatory response to SCI that is associated with activation of microglia and (2) results in changes in neuronal gene expression that are likely to contribute both to post-SCI restoration of neuronal excitability and muscle spasms. These findings have broad implications for other diseases of the Central Nervous System and could open new avenues for developing efficacious antispastic treatments.


Genes | 2017

DNA Methylation Profiling of Human Prefrontal Cortex Neurons in Heroin Users Shows Significant Difference between Genomic Contexts of Hyper- and Hypomethylation and a Younger Epigenetic Age

Alexey Kozlenkov; Andrew E. Jaffe; Alisa Timashpolsky; Pasha Apontes; Sergei Rudchenko; Mihaela Barbu; William Byne; Yasmin L. Hurd; Steve Horvath; Stella Dracheva

We employed Illumina 450 K Infinium microarrays to profile DNA methylation (DNAm) in neuronal nuclei separated by fluorescence-activated sorting from the postmortem orbitofrontal cortex (OFC) of heroin users who died from heroin overdose (N = 37), suicide completers (N = 22) with no evidence of heroin use and from control subjects who did not abuse illicit drugs and died of non-suicide causes (N = 28). We identified 1298 differentially methylated CpG sites (DMSs) between heroin users and controls, and 454 DMSs between suicide completers and controls (p < 0.001). DMSs and corresponding genes (DMGs) in heroin users showed significant differences in the preferential context of hyper and hypo DM. HyperDMSs were enriched in gene bodies and exons but depleted in promoters, whereas hypoDMSs were enriched in promoters and enhancers. In addition, hyperDMGs showed preference for genes expressed specifically by glutamatergic as opposed to GABAergic neurons and enrichment for axonogenesis- and synaptic-related gene ontology categories, whereas hypoDMGs were enriched for transcription factor activity- and gene expression regulation-related terms. Finally, we found that the DNAm-based “epigenetic age” of neurons from heroin users was younger than that in controls. Suicide-related results were more difficult to interpret. Collectively, these findings suggest that the observed DNAm differences could represent functionally significant marks of heroin-associated plasticity in the OFC.


Nature Neuroscience | 2017

Antipsychotic-induced Hdac2 transcription via NF-κB leads to synaptic and cognitive side effects

Daisuke Ibi; Mario de la Fuente Revenga; Nebojsa Kezunovic; Carolina Muguruza; Justin M. Saunders; Supriya A Gaitonde; José L. Moreno; Maryum K. Ijaz; Vishaka Santosh; Alexey Kozlenkov; Terrell Holloway; Jeremy Seto; Aintzane García-Bea; Mitsumasa Kurita; Grace E Mosley; Yan Jiang; Daniel J. Christoffel; Luis F. Callado; Scott J. Russo; Stella Dracheva; Juan F. López-Giménez; Yongchao Ge; Carlos R. Escalante; J. Javier Meana; Schahram Akbarian; George W. Huntley; Javier González-Maeso

Antipsychotic drugs remain the standard for schizophrenia treatment. Despite their effectiveness in treating hallucinations and delusions, prolonged exposure to antipsychotic medications leads to cognitive deficits in both schizophrenia patients and animal models. The molecular mechanisms underlying these negative effects on cognition remain to be elucidated. Here we demonstrate that chronic antipsychotic drug exposure increases nuclear translocation of NF-κB in both mouse and human frontal cortex, a trafficking event triggered via 5-HT2A-receptor-dependent downregulation of the NF-κB repressor IκBα. This upregulation of NF-κB activity led to its increased binding at the Hdac2 promoter, thereby augmenting Hdac2 transcription. Deletion of HDAC2 in forebrain pyramidal neurons prevented the negative effects of antipsychotic treatment on synaptic remodeling and cognition. Conversely, virally mediated activation of NF-κB signaling decreased cortical synaptic plasticity via HDAC2. Together, these observations may aid in developing therapeutic strategies to improve the outcome of schizophrenia treatment.

Collaboration


Dive into the Alexey Kozlenkov's collaboration.

Top Co-Authors

Avatar

Stella Dracheva

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Javier González-Maeso

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Yasmin L. Hurd

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Aintzane García-Bea

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Eugene V. Koonin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

José L. Moreno

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Panos Roussos

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Mitsumasa Kurita

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Scott J. Russo

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Terrell Holloway

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge