Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexey M. Belkin is active.

Publication


Featured researches published by Alexey M. Belkin.


Physiological Reviews | 2014

Transglutaminase Regulation of Cell Function

Richard L. Eckert; Mari T. Kaartinen; Maria Nurminskaya; Alexey M. Belkin; Gozde Colak; Gail V. W. Johnson; Kapil Mehta

Transglutaminases (TGs) are multifunctional proteins having enzymatic and scaffolding functions that participate in regulation of cell fate in a wide range of cellular systems and are implicated to have roles in development of disease. This review highlights the mechanism of action of these proteins with respect to their structure, impact on cell differentiation and survival, role in cancer development and progression, and function in signal transduction. We also discuss the mechanisms whereby TG level is controlled and how TGs control downstream targets. The studies described herein begin to clarify the physiological roles of TGs in both normal biology and disease states.


International Review of Cell and Molecular Biology | 2012

Cellular functions of tissue transglutaminase.

Maria Nurminskaya; Alexey M. Belkin

Transglutaminase 2 (TG2 or tissue transglutaminase) is a highly complex multifunctional protein that acts as transglutaminase, GTPase/ATPase, protein disulfide isomerase, and protein kinase. Moreover, TG2 has many well-documented nonenzymatic functions that are based on its noncovalent interactions with multiple cellular proteins. A vast array of biochemical activities of TG2 accounts for its involvement in a variety of cellular processes, including adhesion, migration, growth, survival, apoptosis, differentiation, and extracellular matrix organization. In turn, the impact of TG2 on these processes implicates this protein in various physiological responses and pathological states, contributing to wound healing, inflammation, autoimmunity, neurodegeneration, vascular remodeling, tumor growth and metastasis, and tissue fibrosis. TG2 is ubiquitously expressed and is particularly abundant in endothelial cells, fibroblasts, osteoblasts, monocytes/macrophages, and smooth muscle cells. The protein is localized in multiple cellular compartments, including the nucleus, cytosol, mitochondria, endolysosomes, plasma membrane, and cell surface and extracellular matrix, where Ca(2+), nucleotides, nitric oxide, reactive oxygen species, membrane lipids, and distinct protein-protein interactions in the local microenvironment jointly regulate its activities. In this review, we discuss the complex biochemical activities and molecular interactions of TG2 in the context of diverse subcellular compartments and evaluate its wide ranging and cell type-specific biological functions and their regulation.


FEBS Journal | 2011

Extracellular TG2: emerging functions and regulation

Alexey M. Belkin

Tissue transglutaminase (TG2) is a ubiquitously expressed member of the transglutaminase family of Ca2+‐dependent crosslinking enzymes. Unlike other family members, TG2 is a multifunctional protein, which has several other well documented enzymatic and non‐enzymatic functions. A significant body of evidence accumulated over the last decade reveals multiple and complex activities of this protein on the cell surface and in the extracellular matrix (ECM), including its role in the regulation of cell–ECM interactions and outside‐in signaling by several types of transmembrane receptors. Moreover, recent findings indicate a dynamic regulation of the levels and functions of extracellular TG2 by several complementary mechanisms. This review summarizes and assesses recent research into the emerging functions and regulation of extracellular TG2.


Journal of Biological Chemistry | 2005

Identification of a Novel Recognition Sequence for Fibronectin within the NH2-terminal β-Sandwich Domain of Tissue Transglutaminase

Jun Hang; Evgeny A. Zemskov; Laszlo Lorand; Alexey M. Belkin

Tissue transglutaminase belongs to the multigene transglutaminase family of Ca2+-dependent protein cross-linking enzymes. Unlike other transglutaminases, it is involved in cell-matrix interactions and serves as an adhesion co-receptor for fibronectin. Previous work established that the fibronectin-binding motif(s) is located within the NH2-terminal proteolytic fragment of the protein consisting of residues 1–272. Here we identify a novel fibronectin recognition site within this sequence of tissue transglutaminase. Substitution of individual domains of tissue transglutaminase with those from homologous factor XIIIA showed that the major fibronectin-binding site is present within the first β-sandwich domain of the protein. Experiments with deletion mutants of the first domain revealed that amino acids 81–140 of tissue transglutaminase are involved in fibronectin binding. Using synthetic peptides encompassing this region, we found that the peptide 88WTATVVDQQDCTLSLQLTT106 inhibited the interaction of tissue transglutaminase with fibronectin and decreased transglutaminase-dependent cell adhesion and spreading. In the three-dimensional structure of the first domain, amino acids 88–106 comprise an extended hairpin formed by antiparallel β strands 5 and 6. Mutations of Asp94 and Asp97 within the β5/β6 hairpin to Ala significantly reduced the affinity of tissue transglutaminase for fibronectin, indicating that these residues are critical for fibronectin binding. Identification of the fibronectin-binding site on tissue transglutaminase will help to dissect the role of this protein in cell-matrix interactions.


Circulation Research | 2010

Decreased S-Nitrosylation of Tissue Transglutaminase Contributes to Age-Related Increases in Vascular Stiffness

Lakshmi Santhanam; Eric C. Tuday; Alanah Webb; Phillip Dowzicky; Jae Hyung Kim; Young Jun Oh; Gautam Sikka; Maggie Kuo; Marc K. Halushka; Anne M. Macgregor; Jessilyn Dunn; Sarah Gutbrod; David Yin; Artin A. Shoukas; Daniel Nyhan; Nicholas A. Flavahan; Alexey M. Belkin; Dan E. Berkowitz

Rationale: Although an age-related decrease in NO bioavailability contributes to vascular stiffness, the underlying molecular mechanisms remain incompletely understood. We hypothesize that NO constrains the activity of the matrix crosslinking enzyme tissue transglutaminase (TG2) via S-nitrosylation in young vessels, a process that is reversed in aging. Objective: We sought to determine whether endothelium-dependent NO regulates TG2 activity by S-nitrosylation and whether this contributes to age-related vascular stiffness. Methods and Results: We first demonstrate that NO suppresses activity and increases S-nitrosylation of TG2 in cellular models. Next, we show that nitric oxide synthase (NOS) inhibition leads to increased surface and extracellular matrix–associated TG2. We then demonstrate that endothelium-derived bioactive NO primarily mediates its effects through TG2, using TG2−/− mice chronically treated with the NOS inhibitor l-NG-nitroarginine methyl ester (L-NAME). We confirm that TG2 activity is modulated by endothelium-derived bioactive NO in young rat aorta. In aging rat aorta, although TG2 expression remains unaltered, its activity increases and S-nitrosylation decreases. Furthermore, TG2 inhibition decreases vascular stiffness in aging rats. Finally, TG2 activity and matrix crosslinks are augmented with age in human aorta, whereas abundance remains unchanged. Conclusions: Decreased S-nitrosylation of TG2 and increased TG activity lead to enhanced matrix crosslinking and contribute to vascular stiffening in aging. TG2 appears to be the member of the transglutaminase family primarily contributing to this phenotype. Inhibition of TG2 could thus represent a therapeutic target for age-associated vascular stiffness and isolated systolic hypertension.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Increased tissue transglutaminase activity contributes to central vascular stiffness in eNOS knockout mice

Sung Mee Jung; Simran K. Jandu; Jochen Steppan; Alexey M. Belkin; Steven S. An; Alina Pak; Eric Y Choi; Daniel Nyhan; Mark Butlin; Kayla Viegas; Alberto Avolio; Dan E. Berkowitz; Lakshmi Santhanam

Nitric oxide (NO) can modulate arterial stiffness by regulating both functional and structural changes in the arterial wall. Tissue transglutaminase (TG2) has been shown to contribute to increased central aortic stiffness by catalyzing the cross-linking of matrix proteins. NO S-nitrosylates and constrains TG2 to the cytosolic compartment and thereby holds its cross-linking function latent. In the present study, the role of endothelial NO synthase (eNOS)-derived NO in regulating TG2 function was studied using eNOS knockout mice. Matrix-associated TG2 and TG2 cross-linking function were higher, whereas TG2 S-nitrosylation was lower in the eNOS(-/-) compared with wild-type (WT) mice. Pulse-wave velocity (PWV) and blood pressure measured noninvasively were elevated in the eNOS(-/-) compared with WT mice. Intact aortas and decellularized aortic tissue scaffolds of eNOS(-/-) mice were significantly stiffer, as determined by tensile testing. The carotid arteries of the eNOS(-/-) mice were also stiffer, as determined by pressure-dimension analysis. Invasive methods to determine the PWV-mean arterial pressure relationship showed that PWV in eNOS(-/-) and WT diverge at higher mean arterial pressure. Thus eNOS-derived NO regulates TG2 localization and function and contributes to vascular stiffness.


Journal of the American Heart Association | 2014

Exercise, vascular stiffness, and tissue transglutaminase.

Jochen Steppan; Gautam Sikka; Simran K. Jandu; Viachaslau Barodka; Marc K. Halushka; Nicholas A. Flavahan; Alexey M. Belkin; Daniel Nyhan; Mark Butlin; Alberto Avolio; Dan E. Berkowitz; Lakshmi Santhanam

Background Vascular aging is closely associated with increased vascular stiffness. It has recently been demonstrated that decreased nitric oxide (NO)‐induced S‐nitrosylation of tissue transglutaminase (TG2) contributes to age‐related vascular stiffness. In the current study, we tested the hypothesis that exercise restores NO signaling and attenuates vascular stiffness by decreasing TG2 activity and cross‐linking in an aging rat model. Methods and Results Rats were subjected to 12 weeks of moderate aerobic exercise. Aging was associated with diminished phosphorylated endothelial nitric oxide synthase and phosphorylated vasodilator‐stimulated phosphoprotein abundance, suggesting reduced NO signaling. TG2 cross‐linking activity was significantly increased in old animals, whereas TG2 abundance remained unchanged. These alterations were attenuated in the exercise cohort. Simultaneous measurement of blood pressure and pulse wave velocity (PWV) demonstrated increased aortic stiffness in old rats, compared to young, at all values of mean arterial pressure (MAP). The PWV‐MAP correlation in the old sedentary and old exercise cohorts was similar. Tensile testing of the vessels showed increased stiffness of the aorta in the old phenotype with a modest restoration of mechanical properties toward the young phenotype with exercise. Conclusions Increased vascular stiffness during aging is associated with decreased TG2 S‐nitrosylation, increased TG2 cross‐linking activity, and increased vascular stiffness likely the result of decreased NO bioavailability. In this study, a brief period of moderate aerobic exercise enhanced NO signaling, attenuated TG cross‐linking activity, and reduced ex vivo tensile properties, but failed to reverse functional vascular stiffness in vivo, as measured by PWV.


Amino Acids | 2013

Nitric oxide regulates tissue transglutaminase localization and function in the vasculature

Simran K. Jandu; Alanah Webb; Alina Pak; Baris Sevinc; Daniel Nyhan; Alexey M. Belkin; Nicholas A. Flavahan; Dan E. Berkowitz; Lakshmi Santhanam

The multifunctional enzyme tissue transglutaminase (TG2) contributes to the development and progression of several cardiovascular diseases. Extracellular rather than intracellular TG2 is enzymatically active, however, the mechanism by which it is exported out of the cell remains unknown. Nitric oxide (NO) is shown to constrain TG2 externalization in endothelial and fibroblast cells. Here, we examined the role of both exogenous and endogenous (endothelial cell-derived) NO in regulating TG2 localization in vascular cells and tissue. NO synthase inhibition in endothelial cells (ECs) using N-nitro l-arginine methyl ester (l-NAME) led to a time-dependent decrease in S-nitrosation and increase in externalization of TG2. Laminar shear stress led to decreased extracellular TG2 in ECs. S-nitrosoglutathione treatment led to decreased activity and externalization of TG2 in human aortic smooth muscle and fibroblast (IMR90) cells. Co-culture of these cells with ECs resulted in increased S-nitrosation and decreased externalization and activity of TG2, which was reversed by l-NAME. Aged Fischer 344 rats had higher tissue scaffold-associated TG2 compared to young. NO regulates intracellular versus extracellular TG2 localization in vascular cells and tissue, likely via S-nitrosation. This in part, explains increased TG2 externalization and activity in aging aorta.


Journal of Cell Science | 2014

Aciculin interacts with filamin C and Xin and is essential for myofibril assembly, remodeling and maintenance

Sibylle Molt; John B. Bührdel; Sergiy Yakovlev; Peter Schein; Zacharias Orfanos; Gregor Kirfel; Lilli Winter; Gerhard Wiche; Peter F.M. van der Ven; Wolfgang Rottbauer; Steffen Just; Alexey M. Belkin; Dieter O. Fürst

ABSTRACT Filamin C (FLNc) and Xin actin-binding repeat-containing proteins (XIRPs) are multi-adaptor proteins that are mainly expressed in cardiac and skeletal muscles and which play important roles in the assembly and repair of myofibrils and their attachment to the membrane. We identified the dystrophin-binding protein aciculin (also known as phosphoglucomutase-like protein 5, PGM5) as a new interaction partner of FLNc and Xin. All three proteins colocalized at intercalated discs of cardiac muscle and myotendinous junctions of skeletal muscle, whereas FLNc and aciculin also colocalized in mature Z-discs. Bimolecular fluorescence complementation experiments in developing cultured mammalian skeletal muscle cells demonstrated that Xin and aciculin also interact in FLNc-containing immature myofibrils and areas of myofibrillar remodeling and repair induced by electrical pulse stimulation (EPS). Fluorescence recovery after photobleaching (FRAP) experiments showed that aciculin is a highly dynamic and mobile protein. Aciculin knockdown in myotubes led to failure in myofibril assembly, alignment and membrane attachment, and a massive reduction in myofibril number. A highly similar phenotype was found upon depletion of aciculin in zebrafish embryos. Our results point to a thus far unappreciated, but essential, function of aciculin in myofibril formation, maintenance and remodeling.


Communicative & Integrative Biology | 2011

Nitric oxide regulates non-classical secretion of tissue transglutaminase

Lakshmi Santhanam; Dan E. Berkowitz; Alexey M. Belkin

Nitric oxide (NO) is an endogenous second messenger which acts as a potent vasodilator, anti-inflammatory, anti-thrombotic, and pro-angiogenic agent in the vasculature. Recent studies revealed that the effects of NO on blood vessels are mediated in part by its ability to regulate protein trafficking machinery and vesicle-based exocytosis in vascular cells. Specifically, NO-dependent S-nitrosylation of N-ethylmaleimide sensitive factor (NSF), an ATPase that enables membrane fusion, was shown to inhibit exocytosis of vesicular secretory compartments such as endothelial Weibel-Palade bodies, platelet alpha granules, and cytolytic granules from activated lymphocytes. Tissue transglutaminase (tTG or TG2) is a multifunctional protein synthesized and secreted by various cell types in the vasculature, which is involved in multiple vascular diseases, including atherosclerosis, vascular calcification, and age-dependent aortic stiffening. Our recent findings indicate that tTG is delivered to the cell surface and the extracellular matrix (ECM) via a non-classical ER/Golgi-independent secretion pathway, which depends on the recycling endosomes and the NSF function. Here we report that NO attenuates the unconventional secretion of tTG in human aortic endothelial cells. NO-dependent down-regulation of extracellular tTG levels via inhibition of its secretion might be a part of general physiological mechanism which limits externalization of adhesive, pro-inflammatory and thrombogenic proteins in the vasculature.

Collaboration


Dive into the Alexey M. Belkin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Nyhan

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simran K. Jandu

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Alanah Webb

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge