Alexey Polonikov
Kursk State Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexey Polonikov.
PLOS Genetics | 2011
Kirstin Mittelstrass; Janina S. Ried; Zhonghao Yu; Jan Krumsiek; Christian Gieger; Cornelia Prehn; Werner Roemisch-Margl; Alexey Polonikov; Annette Peters; Fabian J. Theis; Thomas Meitinger; Florian Kronenberg; Stephan Weidinger; Heinz Erich Wichmann; Karsten Suhre; Rui Wang-Sattler; Jerzy Adamski; Thomas Illig
Metabolomic profiling and the integration of whole-genome genetic association data has proven to be a powerful tool to comprehensively explore gene regulatory networks and to investigate the effects of genetic variation at the molecular level. Serum metabolite concentrations allow a direct readout of biological processes, and association of specific metabolomic signatures with complex diseases such as Alzheimers disease and cardiovascular and metabolic disorders has been shown. There are well-known correlations between sex and the incidence, prevalence, age of onset, symptoms, and severity of a disease, as well as the reaction to drugs. However, most of the studies published so far did not consider the role of sexual dimorphism and did not analyse their data stratified by gender. This study investigated sex-specific differences of serum metabolite concentrations and their underlying genetic determination. For discovery and replication we used more than 3,300 independent individuals from KORA F3 and F4 with metabolite measurements of 131 metabolites, including amino acids, phosphatidylcholines, sphingomyelins, acylcarnitines, and C6-sugars. A linear regression approach revealed significant concentration differences between males and females for 102 out of 131 metabolites (p-values<3.8×10−4; Bonferroni-corrected threshold). Sex-specific genome-wide association studies (GWAS) showed genome-wide significant differences in beta-estimates for SNPs in the CPS1 locus (carbamoyl-phosphate synthase 1, significance level: p<3.8×10−10; Bonferroni-corrected threshold) for glycine. We showed that the metabolite profiles of males and females are significantly different and, furthermore, that specific genetic variants in metabolism-related genes depict sexual dimorphism. Our study provides new important insights into sex-specific differences of cell regulatory processes and underscores that studies should consider sex-specific effects in design and interpretation.
PLOS ONE | 2011
Zhonghao Yu; Gabi Kastenmüller; Ying He; Petra Belcredi; Gabriele Möller; Cornelia Prehn; Joaquim Mendes; Simone Wahl; Werner Roemisch-Margl; Uta Ceglarek; Alexey Polonikov; Norbert Dahmen; Holger Prokisch; Lu Xie; Yixue Li; H.-Erich Wichmann; Annette Peters; Florian Kronenberg; Karsten Suhre; Jerzy Adamski; Thomas Illig; Rui Wang-Sattler
Background Human plasma and serum are widely used matrices in clinical and biological studies. However, different collecting procedures and the coagulation cascade influence concentrations of both proteins and metabolites in these matrices. The effects on metabolite concentration profiles have not been fully characterized. Methodology/Principal Findings We analyzed the concentrations of 163 metabolites in plasma and serum samples collected simultaneously from 377 fasting individuals. To ensure data quality, 41 metabolites with low measurement stability were excluded from further analysis. In addition, plasma and corresponding serum samples from 83 individuals were re-measured in the same plates and mean correlation coefficients (r) of all metabolites between the duplicates were 0.83 and 0.80 in plasma and serum, respectively, indicating significantly better stability of plasma compared to serum (p = 0.01). Metabolite profiles from plasma and serum were clearly distinct with 104 metabolites showing significantly higher concentrations in serum. In particular, 9 metabolites showed relative concentration differences larger than 20%. Despite differences in absolute concentration between the two matrices, for most metabolites the overall correlation was high (mean r = 0.81±0.10), which reflects a proportional change in concentration. Furthermore, when two groups of individuals with different phenotypes were compared with each other using both matrices, more metabolites with significantly different concentrations could be identified in serum than in plasma. For example, when 51 type 2 diabetes (T2D) patients were compared with 326 non-T2D individuals, 15 more significantly different metabolites were found in serum, in addition to the 25 common to both matrices. Conclusions/Significance Our study shows that reproducibility was good in both plasma and serum, and better in plasma. Furthermore, as long as the same blood preparation procedure is used, either matrix should generate similar results in clinical and biological studies. The higher metabolite concentrations in serum, however, make it possible to provide more sensitive results in biomarker detection.
Nature Communications | 2014
Thomas W. Muehleisen; Markus Leber; Thomas G. Schulze; Jana Strohmaier; Franziska Degenhardt; Manuel Mattheisen; Andreas J. Forstner; Johannes Schumacher; René Breuer; Sandra Meier; Stefan Herms; Per Hoffmann; André Lacour; Stephanie H. Witt; Andreas Reif; Bertram Müller-Myhsok; Susanne Lucae; Wolfgang Maier; Markus J. Schwarz; Helmut Vedder; Jutta Kammerer-Ciernioch; Andrea Pfennig; Michael Bauer; Martin Hautzinger; Susanne Moebus; Lutz Priebe; Piotr M. Czerski; Joanna Hauser; Jolanta Lissowska; Neonila Szeszenia-Dabrowska
Bipolar disorder (BD) is a common and highly heritable mental illness and genome-wide association studies (GWAS) have robustly identified the first common genetic variants involved in disease aetiology. The data also provide strong evidence for the presence of multiple additional risk loci, each contributing a relatively small effect to BD susceptibility. Large samples are necessary to detect these risk loci. Here we present results from the largest BD GWAS to date by investigating 2.3 million single-nucleotide polymorphisms (SNPs) in a sample of 24,025 patients and controls. We detect 56 genome-wide significant SNPs in five chromosomal regions including previously reported risk loci ANK3, ODZ4 and TRANK1, as well as the risk locus ADCY2 (5p15.31) and a region between MIR2113 and POU3F2 (6q16.1). ADCY2 is a key enzyme in cAMP signalling and our finding provides new insights into the biological mechanisms involved in the development of BD.
Obesity Facts | 2012
Simone Wahl; Zhonghao Yu; Michaela Kleber; Paula Singmann; Christina Holzapfel; Ying He; Kirstin Mittelstrass; Alexey Polonikov; Cornelia Prehn; Werner Römisch-Margl; Jerzy Adamski; Karsten Suhre; Harald Grallert; Thomas Illig; Rui Wang-Sattler; Thomas Reinehr
Objective: The human serum metabolite profile is reflective of metabolic processes, including pathophysiological changes characteristic of diseases. Therefore, investigation of serum metabolite concentrations in obese children might give new insights into biological mechanisms associated with childhood obesity. Methods: Serum samples of 80 obese and 40 normal-weight children between 6 and 15 years of age were analyzed using a mass spectrometry-based metabolomics approach targeting 163 metabolites. Metabolite concentrations and metabolite ratios were compared between obese and normal-weight children as well as between children of different pubertal stages. Results: Metabolite concentration profiles of obese children could be distinguished from those of normal-weight children. After correction for multiple testing, we observed 14 metabolites (glutamine, methionine, proline, nine phospholipids, and two acylcarnitines, p < 3.8 × 10–4) and 69 metabolite ratios (p < 6.0 × 10–6) to be significantly altered in obese children. The identified metabolite markers are indicative of oxidative stress and of changes in sphingomyelin metabolism, in β-oxidation, and in pathways associated with energy expenditure. In contrast, pubertal stage was not associated with metabolite concentration differences. Conclusion: Our study shows that childhood obesity influences the composition of the serum metabolome. If replicated in larger studies, the altered metabolites might be considered as potential biomarkers in the generation of new hypotheses on the biological mechanisms behind obesity.
Disease Markers | 2008
Alexey Polonikov; V. P. Ivanov; Maria Solodilova; Irina V. Khoroshaya; Mikhail A. Kozhuhov; Vladimir E. Ivakin; Ludmila N. Katargina; Ol'ga E. Kolesnikova
The present study was designed to test whether common polymorphism G-50T within the promoter of human CYP2J2 gene is associated with increased risk of essential hypertension in a Russian population. We studied 576 unrelated subjects, including 295 patients with hypertension and 281 healthy subjects. Genotyping for polymorphism G-50T of the CYP2J2 gene was performed by polymerase chain reaction and restriction fragment length polymorphism techniques. The frequency of a −50T variant allele of CYP2J2 gene was significantly higher in patients with hypertension versus healthy controls (OR 4.03 95%CI 1.80–9.04 p=0.0004). The association of a −50GT genotype with hypertension remained significant after adjustment for age, gender and family history of hypertension by multivariate logistic regression (OR 4.78 95%CI 1.87–12.27 p=0.001). It has been found that OR for −50GT genotype × gender interaction (OR 4.48 95%CI 1.93–10.39 p=0.00048) was slightly higher than OR for −50GT genotype (OR 4.43 95%CI 1.91–10.29 p=0.00052), suggesting a weak effect of gender on the risk of hypertension in the heterozygous carriers of −50GT genotype. A family history of hypertension has no effect on the association between a −50GT genotype and hypertension. In present study we demonstrate for the first time that a CYP2J2*7 allele of the CYP2J2 gene is clearly associated with an increased risk of essential hypertension. Furthermore, this study highlights the importance of P-450 epoxygenase pathway of arachidonic acid metabolism in the pathogenesis of hypertensive disease.
Journal of Human Genetics | 2009
Alexey Polonikov; V. P. Ivanov; Maria Solodilova
The aim of our pilot study was to evaluate the contribution of genes for xenobiotic-metabolizing enzymes (XMEs) for the development of bronchial asthma. We have genotyped 25 polymorphic variants of 18 key XME genes in 429 Russians, including 215 asthmatics and 214 healthy controls by a polymerase chain reaction, followed by restriction fragment length polymorphism analyses. We found for the first time significant associations of CYP1B1 V432L (P=0.045), PON1 Q192R (P=0.039) and UGT1A6 T181A (P=0.025) gene polymorphisms with asthma susceptibility. Significant P-values were evaluated through Monte-Carlo simulations. The multifactor-dimensionality reduction method has obtained the best three-locus model for gene–gene interactions between three loci, EPHX1 Y113H, CYP1B1 V432L and CYP2D6 G1934A, in asthma at a maximum cross-validation consistency of 100% (P=0.05) and a minimum prediction error of 37.8%. We revealed statistically significant gene–environment interactions (XME genotypes–smoking interactions) responsible for asthma susceptibility for seven XME genes. A specific pattern of gametic correlations between alleles of XME genes was found in asthmatics in comparison with healthy individuals. The study results point to the potential relevance of toxicogenomic mechanisms of bronchial asthma in the modern world, and may thereby provide a novel direction in the genetic research of the respiratory disease in the future.
Translational Psychiatry | 2015
Andreas J. Forstner; Andrea Hofmann; Anna Maaser; S Sumer; Sharof Khudayberdiev; Thomas W. Mühleisen; Markus Leber; Thomas G. Schulze; Jana Strohmaier; Franziska Degenhardt; J Treutlein; Manuel Mattheisen; Johannes Schumacher; René Breuer; Sandra Meier; Stefan Herms; Per Hoffmann; A Lacour; Stephanie H. Witt; Andreas Reif; Bertram Müller-Myhsok; Susanne Lucae; W. Maier; Markus Schwarz; Helmut Vedder; Jutta Kammerer-Ciernioch; Andrea Pfennig; Michael Bauer; Martin Hautzinger; Susanne Moebus
Bipolar disorder (BD) is a severe and highly heritable neuropsychiatric disorder with a lifetime prevalence of 1%. Molecular genetic studies have identified the first BD susceptibility genes. However, the disease pathways remain largely unknown. Accumulating evidence suggests that microRNAs, a class of small noncoding RNAs, contribute to basic mechanisms underlying brain development and plasticity, suggesting their possible involvement in the pathogenesis of several psychiatric disorders, including BD. In the present study, gene-based analyses were performed for all known autosomal microRNAs using the largest genome-wide association data set of BD to date (9747 patients and 14 278 controls). Associated and brain-expressed microRNAs were then investigated in target gene and pathway analyses. Functional analyses of miR-499 and miR-708 were performed in rat hippocampal neurons. Ninety-eight of the six hundred nine investigated microRNAs showed nominally significant P-values, suggesting that BD-associated microRNAs might be enriched within known microRNA loci. After correction for multiple testing, nine microRNAs showed a significant association with BD. The most promising were miR-499, miR-708 and miR-1908. Target gene and pathway analyses revealed 18 significant canonical pathways, including brain development and neuron projection. For miR-499, four Bonferroni-corrected significant target genes were identified, including the genome-wide risk gene for psychiatric disorder CACNB2. First results of functional analyses in rat hippocampal neurons neither revealed nor excluded a major contribution of miR-499 or miR-708 to dendritic spine morphogenesis. The present results suggest that research is warranted to elucidate the precise involvement of microRNAs and their downstream pathways in BD.
Fertility and Sterility | 2010
Alexey Polonikov; Sergey L. Yarosh; Elena V. Kokhtenko; Nina I. Starodubova; Sergey P. Pakhomov; Valentina S. Orlova
This study was designed to investigate the association between null polymorphisms of glutathione S-transferase (GST) M1 and T1 genes and idiopathic male infertility in a Russian population including 203 infertile and 227 fertile men. The nondeletion genotype of the GSTT1 gene was found to be strongly associated with the increased risk of idiopathic male infertility and asthenozoospermia.
Journal of Asthma | 2009
Alexey Polonikov; V. P. Ivanov; M. A. Solodilova; M. A. Kozhuhov; V. I. Panfilov
Although oxidative stress is a cardinal feature of bronchial asthma, the role of interactions between environmental oxidant/antioxidant exposures and antioxidant genes in asthma aetiology has yet to be determined. The present study was conducted to investigate whether two common polymorphisms -21A > T and -262C > T of catalase (CAT) gene are associated with susceptibility to asthma in a Russian population and to test the hypothesis that the asthma risk attributed to CAT genotypes could be dependent on both oxidant (tobacco smoking) and antioxidant (fruit and vegetable intake) exposures. A total of 429 unrelated Russian individuals from Central Russia were recruited in the study, including 215 asthmatics and 214 sex- and age-matched healthy controls. Genotyping analysis for the CAT gene polymorphisms was performed by PCR-RFLP assays. The frequencies of both allele -21A (OR 0.73 95%CI 0.55–0.96 p = 0.03) and -21AA CAT genotype (OR 0.42 95%CI 0.23–0.76 p = 0.004) were higher among asthmatics than among healthy controls. The frequency of -21AA genotype of the CAT gene was significantly higher in patients with allergic (OR 0.47 95%CI 0.25–0.92 p = 0.024) and nonallergic (OR 0.32 95%CI 0.14–0.71 p = 0.004) asthma in comparison with controls (at the Bonferroni corrected p value less than 0.025). Polymorphisms -21A > T and -262C > T of the catalase gene were in a positive linkage disequilibrium (p < 0.0001). Smokers who carried -21AA genotype had an increased risk of nonallergic asthma (p = 0.002), whereas nonsmoker carriers of this genotype did not have the risk of any variant of the disease. Notably, no association of CAT genotype -21AA with asthma was found in high fruit and vegetable consumers, whereas low fruit and vegetable consumers (one time per day or less often) possessing this genotype were at increased risk of both allergic (p = 0.013) and nonallergic (p = 0.008) asthma. This is the first study reporting an association of polymorphism -21A > T of the catalase gene with allergic and nonallergic asthma. We also found, for the first time, that cigarette smoking and fruit and vegetable intakes have potentially inverse modifying influences on the asthma risk in individuals with -21AA CAT genotype and that the gene-environment interactions that were found support the biologic plausibility of catalase gene for the development of bronchial asthma.
PLOS ONE | 2017
Andreas J. Forstner; Julian Hecker; Andrea Hofmann; Anna Maaser; Céline S. Reinbold; Thomas W. Mühleisen; Markus Leber; Jana Strohmaier; Franziska Degenhardt; Manuel Mattheisen; Johannes Schumacher; Fabian Streit; Sandra Meier; Stefan Herms; Per Hoffmann; André Lacour; Stephanie H. Witt; Andreas Reif; Bertram Müller-Myhsok; Susanne Lucae; Wolfgang Maier; Markus Schwarz; Helmut Vedder; Jutta Kammerer-Ciernioch; Andrea Pfennig; Michael Bauer; Martin Hautzinger; Susanne Moebus; Lorena M. Schenk; Sascha B. Fischer
Bipolar disorder (BD) is a highly heritable neuropsychiatric disease characterized by recurrent episodes of mania and depression. BD shows substantial clinical and genetic overlap with other psychiatric disorders, in particular schizophrenia (SCZ). The genes underlying this etiological overlap remain largely unknown. A recent SCZ genome wide association study (GWAS) by the Psychiatric Genomics Consortium identified 128 independent genome-wide significant single nucleotide polymorphisms (SNPs). The present study investigated whether these SCZ-associated SNPs also contribute to BD development through the performance of association testing in a large BD GWAS dataset (9747 patients, 14278 controls). After re-imputation and correction for sample overlap, 22 of 107 investigated SCZ SNPs showed nominal association with BD. The number of shared SCZ-BD SNPs was significantly higher than expected (p = 1.46x10-8). This provides further evidence that SCZ-associated loci contribute to the development of BD. Two SNPs remained significant after Bonferroni correction. The most strongly associated SNP was located near TRANK1, which is a reported genome-wide significant risk gene for BD. Pathway analyses for all shared SCZ-BD SNPs revealed 25 nominally enriched gene-sets, which showed partial overlap in terms of the underlying genes. The enriched gene-sets included calcium- and glutamate signaling, neuropathic pain signaling in dorsal horn neurons, and calmodulin binding. The present data provide further insights into shared risk loci and disease-associated pathways for BD and SCZ. This may suggest new research directions for the treatment and prevention of these two major psychiatric disorders.