Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexey V. Akimov is active.

Publication


Featured researches published by Alexey V. Akimov.


Journal of Chemical Theory and Computation | 2013

The PYXAID Program for Non-Adiabatic Molecular Dynamics in Condensed Matter Systems.

Alexey V. Akimov; Oleg V. Prezhdo

This work introduces the PYXAID program, developed for non-adiabatic molecular dynamics simulations in condensed matter systems. By applying the classical path approximation to the fewest switches surface hopping approach, we have developed an efficient computational tool that can be applied to study photoinduced dynamics at the ab initio level in systems composed of hundreds of atoms and involving thousands of electronic states. The technique is used to study in detail the ultrafast relaxation of hot electrons in crystalline pentacene. The simulated relaxation occurs on a 500 fs time scale, in excellent agreement with experiment, and is driven by molecular lattice vibrations in the 200-250 cm(-1) frequency range. The PYXAID program is organized as a Python extension module and can be easily combined with other Python-driven modules, enhancing user-friendliness and flexibility of the software. The source code and additional information are available on the Web at the address http://gdriv.es/pyxaid . The program is released under the GNU General Public License.


Journal of Chemical Theory and Computation | 2014

Advanced Capabilities of the PYXAID Program: Integration Schemes, Decoherence Effects, Multiexcitonic States, and Field-Matter Interaction.

Alexey V. Akimov; Oleg V. Prezhdo

In our previous work [J. Chem. Theory Comput. 2013, 9, 4959], we introduced the PYXAID program, developed for the purpose of performing nonadiabatic molecular dynamics simulations in large-scale condensed matter systems. The methodological aspects and the basic capabilities of the program have been extensively discussed. In the present work, we perform a thorough investigation of advanced capabilities of the program, namely, the advanced integration techniques for the time-dependent Schrodinger equation (TD-SE), the decoherence corrections via decoherence-induced surface hopping, the use of multiexciton basis configurations, and the direct simulation of photoexcitation via explicit light-matter interaction. We demonstrate the importance of the mentioned features by studying the electronic dynamics in a variety of systems. In particular, we demonstrate that the advanced integration techniques for solving TD-SE may lead to a significant speedup of the calculations and provide more stable solutions. We show that decoherence is necessary for accurate description of slow relaxation processes such as electron-hole recombination in solid C60. By using multiexciton configurations and direct, nonperturbative treatment of field-matter interactions, we found nontrivial optimality conditions for the multiple exciton generation in a small silicon cluster.


Journal of the American Chemical Society | 2014

Nonadiabatic dynamics of charge transfer and singlet fission at the pentacene/C60 interface.

Alexey V. Akimov; Oleg V. Prezhdo

Charge carrier multiplication in organic heterojunction systems, a process known as singlet fission (SF), holds promise for development of solar cells with enhanced photon-to-electron yields, and therefore it is of substantial fundamental interest. The efficiency of photovoltaic devices based on this principle is determined by complex dynamics involving key electronic states coupled to particular nuclear motions. Extensive experimental and theoretical studies are dedicated to this topic, generating multiple opinions on the nature of such states and motions, their properties, and mechanisms of the competing processes, including electron-phonon relaxation, SF, and charge separation. Using nonadiabatic molecular dynamics, we identify the key steps and mechanisms involved in the SF and subsequent charge separation, and build a comprehensive kinetic scheme that is consistent with the existing experimental and theoretical results. The ensuing model provides time scales that are in excellent agreement with the experimental observations. We demonstrate that SF competes with the traditional photoinduced electron transfer between pentacene and C60. Efficient SF relies on the presence of intermediate dark states within the pentacene subsystem. Having multiexciton and charge transfer character, these states play critical roles in the dynamics, and should be considered explicitly when explaining the entire process from the photoexcitation to the final charge separation.


Journal of the American Chemical Society | 2013

Nonadiabatic Dynamics of Positive Charge during Photocatalytic Water Splitting on GaN(10-10) Surface: Charge Localization Governs Splitting Efficiency

Alexey V. Akimov; James T. Muckerman; Oleg V. Prezhdo

Photochemical water splitting is a promising avenue to sustainable, clean energy and fuel production. Gallium nitride (GaN) and its solid solutions are excellent photocatalytic materials; however, the efficiency of the process is low on pure GaN, and cocatalysts are required to increase the yields. We present the first time-domain theoretical study of the initial steps of photocatalytic water splitting on a GaN surface. Our state-of-the-art simulation technique, combining nonadiabatic molecular dynamics and time-dependent density functional theory, allows us to characterize the mechanisms and time scales of the evolution of the photogenerated positive charge (hole) and the subsequent proton transfer at the GaN/water interface. The calculations show that the hole loses its excess energy within 100 fs and localizes primarily on the nitrogen atoms of the GaN surface, initiating a sequence of proton-transfer events from the surface N-H group to the nearby OH groups and bulk water molecules. Water splitting requires hole localization on oxygen rather than nitrogen, necessitating nonadiabatic transitions uphill in energy on pure GaN. Such transitions happen rarely, resulting in low yields of the photocatalytic water splitting observed experimentally. We conclude that efficient cocatalysts should favor localization of the photogenerated hole on oxygen-containing species at the semiconductor/water interface.


Journal of Chemical Physics | 2014

Coherence penalty functional: A simple method for adding decoherence in Ehrenfest dynamics

Alexey V. Akimov; Run Long; Oleg V. Prezhdo

We present a new semiclassical approach for description of decoherence in electronically non-adiabatic molecular dynamics. The method is formulated on the grounds of the Ehrenfest dynamics and the Meyer-Miller-Thoss-Stock mapping of the time-dependent Schrödinger equation onto a fully classical Hamiltonian representation. We introduce a coherence penalty functional (CPF) that accounts for decoherence effects by randomizing the wavefunction phase and penalizing development of coherences in regions of strong non-adiabatic coupling. The performance of the method is demonstrated with several model and realistic systems. Compared to other semiclassical methods tested, the CPF method eliminates artificial interference and improves agreement with the fully quantum calculations on the models. When applied to study electron transfer dynamics in the nanoscale systems, the method shows an improved accuracy of the predicted time scales. The simplicity and high computational efficiency of the CPF approach make it a perfect practical candidate for applications in realistic systems.


Journal of the American Chemical Society | 2015

What Makes the Photocatalytic CO2 Reduction on N-Doped Ta2O5 Efficient: Insights from Nonadiabatic Molecular Dynamics

Alexey V. Akimov; Ryoji Asahi; Ryosuke Jinnouchi; Oleg V. Prezhdo

Recent experimental studies demonstrated that photocatalytic CO2 reduction by Ru catalysts assembled on N-doped Ta2O5 surface is strongly dependent on the nature of the anchor group with which the Ru complexes are attached to the substrate. We report a comprehensive atomistic analysis of electron transfer dynamics in electroneutral Ru(di-X-bpy) (CO)2Cl2 complexes with X = COOH and PO3H2 attached to the N-Ta2O5 substrate. Nonadiabatic molecular dynamics simulations indicate that the electron transfer is faster in complexes with COOH anchors than in complexes with PO3H2 groups, due to larger nonadiabatic coupling. Quantum coherence counteracts this effect, however, to a small extent. The COOH anchor promotes the transfer with significantly higher frequency modes than PO3H2, due to both lighter atoms (C vs P) and stronger bonds (double vs single). The acceptor state delocalizes onto COOH, but not PO3H2, further favoring electron transfer in the COOH system. At the same time, the COOH anchor is prone to decomposition, in contrast to PO3H2, making the former show smaller turnover numbers in some cases. These theoretical predictions are consistent with recent experimental results, legitimating the proposed mechanism of the electron transfer. We emphasize the role of anchor stability, nonadiabatic coupling, and quantum coherence in determining the overall efficiency of artificial photocatalytic systems.


Journal of Chemical Theory and Computation | 2016

Nonadiabatic Molecular Dynamics for Thousand Atom Systems: A Tight-Binding Approach toward PYXAID

Sougata Pal; Dhara Trivedi; Alexey V. Akimov; Bálint Aradi; Thomas Frauenheim; Oleg V. Prezhdo

Excited state dynamics at the nanoscale requires treatment of systems involving hundreds and thousands of atoms. In the majority of cases, depending on the process under investigation, the electronic structure component of the calculation constitutes the computation bottleneck. We developed an efficient approach for simulating nonadiabatic molecular dynamics (NA-MD) of large systems in the framework of the self-consistent charge density functional tight binding (SCC-DFTB) method. SCC-DFTB is combined with the fewest switches surface hopping (FSSH) and decoherence induced surface hopping (DISH) techniques for NA-MD. The approach is implemented within the Python extension for the ab initio dynamics (PYXAID) simulation package, which is an open source NA-MD program designed to handle nanoscale materials. The accuracy of the developed approach is tested with ab initio DFT and experimental data, by considering intraband electron and hole relaxation, and nonradiative electron-hole recombination in a CdSe quantum dot and the (10,5) semiconducting carbon nanotube. The technique is capable of treating accurately and efficiently excitation dynamics in large, realistic nanoscale materials, employing modest computational resources.


Journal of Chemical Theory and Computation | 2010

Rigid-Body Molecular Dynamics of Fullerene-Based Nanocars on Metallic Surfaces

Sergei S. Konyukhov; Ilya V. Kupchenko; Alexander Moskovsky; Alexander V. Nemukhin; Alexey V. Akimov; Anatoly B. Kolomeisky

Methodical problems of coarse-grained-type molecular dynamics, namely, rigid-body molecular dynamics (RB MD), are studied by investigating the dynamics of nanosized molecular vehicles called nanocars that move on gold and silver surfaces. Specifically, we analyzed the role of thermostats and the effects of temperature, couplings, and correlations between rigid fragments of the nanocar molecule in extensive RB MD simulations. It is found that the use of the Nosé-Poincaré thermostat does not introduce systematic errors, but the time trajectories might be required to be limited to not accumulate large numerical integration errors. Correlations in the motion of different fragments of the molecules are also analyzed. Our theoretical computations also point to the importance of temperature, interfragment interactions, and interactions with surfaces and to the nature of the surface for understanding mechanisms of motion of single-molecule transporters.


Journal of Physical Chemistry Letters | 2016

Nonradiative Electron–Hole Recombination Rate Is Greatly Reduced by Defects in Monolayer Black Phosphorus: Ab Initio Time Domain Study

Run Long; Weihai Fang; Alexey V. Akimov

We report ab initio time-domain simulations of nonradiative electron-hole recombination and electronic dephasing in ideal and defect-containing monolayer black phosphorus (MBP). Our calculations predict that the presence of phosphorus divacancy in MBP (MBP-DV) substantially reduces the nonradiative recombination rate, with time scales on the order of 1.57 ns. The luminescence line width in ideal MBP of 150 meV is 2.5 times larger than MBP-DV at room temperature, and is in excellent agreement with experiment. We find that the electron-hole recombination in ideal MBP is driven by the 450 cm(-1) vibrational mode, whereas the recombination in the MBP-DV system is driven by a broad range of vibrational modes. The reduced electron-phonon coupling and increased bandgap in MBP-DV rationalize slower recombination in this material, suggesting that electron-phonon energy losses in MBP can be minimized by creating suitable defects in semiconductor device material.


Journal of Physical Chemistry B | 2015

Theoretical Insights into the Impact of Ru Catalyst Anchors on the Efficiency of Photocatalytic CO2 Reduction on Ta2O5

Alexey V. Akimov; Ryosuke Jinnouchi; Soichi Shirai; Ryoji Asahi; Oleg V. Prezhdo

We present a computational study of the dynamical and electronic structure origins of the impact of anchoring groups, PO3H2, COOH, and OH, on the efficiency of photochemical CO2 reduction in Ru(di-X-bpy)(CO)2Cl2/Ta2O5 systems. Recent experimental studies indicate that the efficiency may not directly correlate with the driving force for electron transfer (ET) in these systems, prompting the need for further investigation of the role of anchor groups. Our analysis shows that there are at least two key roles of the anchor in determining the efficiency of CO2 reduction by the Ru complex. First, depending on local steric interactions, different tilting angles and their fluctuations may emerge for different anchors, affecting the magnitude of the donor-acceptor coupling. Second, depending on localization of acceptor states on the anchor, determined by the anchors tendency to form conjugate subsystems, the yields of ET to the catalytic center may vary, directly affecting the photocatalytic efficiency. Finally, our calculations indicate that surface modeling with N-doping and many-body effects are needed to describe the ET process in the systems properly. N-doping imparts the Ta2O5 surface with a dipole moment, while Coulomb and exchange contributions to the electron-hole interaction can produce excitons that should be taken into account.

Collaboration


Dive into the Alexey V. Akimov's collaboration.

Top Co-Authors

Avatar

Oleg V. Prezhdo

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Run Long

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge