Alexey V. Pshezhetsky
Université de Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexey V. Pshezhetsky.
Cellular Signalling | 2010
Schammim Ray Amith; Preethi Jayanth; Susan Franchuk; Trisha Finlay; Volkan Seyrantepe; Rudi Beyaert; Alexey V. Pshezhetsky; Myron R. Szewczuk
The ectodomain of TOLL-like receptors (TLR) is highly glycosylated with several N-linked gylcosylation sites located in the inner concave surface. The precise role of these sugar N-glycans in TLR receptor activation is unknown. Recently, we have shown that Neu1 sialidase and not Neu2, -3 and -4 forms a complex with TLR-2, -3 and -4 receptors on the cell-surface membrane of naïve and activated macrophage cells (Glycoconj J DOI 10.1007/s10719-009-9239-8). Activation of Neu1 is induced by TLR ligands binding to their respective receptors. Here, we show that endotoxin lipopolysaccharide (LPS)-induced MyD88/TLR4 complex formation and subsequent NFkappaB activation is dependent on the removal of alpha-2,3-sialyl residue linked to beta-galactoside of TLR4 by the Neu1 activity associated with LPS-stimulated live primary macrophage cells, macrophage and dendritic cell lines but not with primary Neu1-deficient macrophage cells. Exogenous alpha-2,3 sialyl specific neuraminidase (Streptoccocus pneumoniae) and wild-type T. cruzi trans-sialidase (TS) but not the catalytically inactive mutant TSAsp98-Glu mediate TLR4 dimerization to facilitate MyD88/TLR4 complex formation and NFkappaB activation similar to those responses seen with LPS. These same TLR ligand-induced NFkappaB responses are not observed in TLR deficient HEK293 cells, but are re-established in HEK293 cells stably transfected with TLR4/MD2, and are significantly inhibited by alpha-2,3-sialyl specific Maackia amurensis (MAL-2) lectin, alpha-2,3-sialyl specific galectin-1 and neuraminidase inhibitor Tamiflu but not by alpha-2,6-sialyl specific Sambucus nigra lectin (SNA). Taken together, the findings suggest that Neu1 desialylation of alpha-2,3-sialyl residues of TLR receptors enables in removing a steric hinderance to receptor association for TLR activation and cellular signaling.
Glycoconjugate Journal | 2009
Schammim Ray Amith; Preethi Jayanth; Susan Franchuk; Sarah Siddiqui; Volkan Seyrantepe; Katrina Gee; Sameh Basta; Rudi Beyaert; Alexey V. Pshezhetsky; Myron R. Szewczuk
The signaling pathways of mammalian Toll-like receptors (TLR) are well characterized, but the initial molecular mechanisms activated following ligand interactions with the receptors remain poorly defined. Here, we show a membrane controlling mechanism that is initiated by ligand binding to TLR-2, -3 and-4 to induce Neu1 sialidase activity within minutes in live primary bone marrow (BM) macrophage cells and macrophage and dendritic cell lines. Central to this process is that Neu1 and not Neu2,-3 and-4 forms a complex with TLR-2,-3 and-4 on the cell surface of naïve macrophage cells. Neuraminidase inhibitors BCX1827, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA), zanamivir and oseltamivir carboxylate have a limited significant inhibition of the LPS-induced sialidase activity in live BMC-2 macrophage cells but Tamiflu (oseltamivir phosphate) completely blocks this activity. Tamiflu inhibits LPS-induced sialidase activity in live BMC-2 cells with an IC50 of 1.2u2009μM compared to an IC50 of 1015u2009μM for its hydrolytic metabolite oseltamivir carboxylate. Tamiflu blockage of LPS-induced Neu1 sialidase activity is not affected in BMC-2 cells pretreated with anticarboxylesterase agent clopidogrel. Endotoxin LPS binding to TLR4 induces Neu1 with subsequent activation of NFκB and the production of nitric oxide and pro-inflammatory IL-6 and TNFα cytokines in primary and macrophage cell lines. Hypomorphic cathepsin A mice with a secondary Neu1 deficiency respond poorly to LPS-induced pro-inflammatory cytokines compared to the wild-type or hypomorphic cathepsin A with normal Neu1 mice. Our findings establish an unprecedented mechanism for pathogen molecule-induced TLR activation and cell function, which is critically dependent on Neu1 sialidase activity associated with TLR ligand treated live primary macrophage cells and macrophage and dendritic cell lines.
Journal of Biological Chemistry | 1996
Alexey V. Pshezhetsky; Michel Potier
N-Acetylgalactosamine-6-sulfate sulfatase (GALNS) catalyzes the first step of intralysosomal keratan sulfate (KS) catabolism. In Morquio type A syndrome GALNS deficiency causes the accumulation of KS in tissues and results in generalized skeletal dysplasia in affected patients. We show that in normal cells GALNS is in a 1.27-MDa complex with three other lysosomal hydrolases: β-galactosidase, α-neuraminidase, and cathepsin A (protective protein). GALNS copurifies with the complex by different chromatography techniques: affinity chromatography on both cathepsin A-binding and β-galactosidase-binding columns, gel filtration, and chromatofocusing. Anti-human cathepsin A rabbit antiserum coprecipitates GALNS together with cathepsin A, β-galactosidase, and α-neuraminidase in both a purified preparation of the 1.27-MDa complex and crude glycoprotein fraction from human placenta extract. Gel filtration analysis of fibroblast extracts of patients deficient in either β-galactosidase (β-galactosidosis) or cathepsin A (galactosialidosis), which accumulate KS, demonstrates that the 1.27-MDa complex is disrupted and that GALNS is present only in free homodimeric form. The GALNS activity and cross-reacting material are reduced in the fibroblasts of patients affected with galactosialidosis, indicating that the complex with cathepsin A may protect GALNS in the lysosome. We suggest that the 1.27-MDa complex of lysosomal hydrolases is essential for KS catabolism and that the disruption of this complex may be responsible for the KS accumulation in β-galactosidosis and galactosialidosis patients.
FEBS Journal | 2005
Nicholas M. Stamatos; Feng Liang; Xinli Nan; Karine Landry; Alan S. Cross; Lai-Xi Wang; Alexey V. Pshezhetsky
Sialidases are enzymes that influence cellular activity by removing terminal sialic acid from glycolipids and glycoproteins. Four genetically distinct sialidases have been identified in mammalian cells. In this study, we demonstrate that three of these sialidases, lysosomal Neu1 and Neu4 and plasma membrane‐associated Neu3, are expressed in human monocytes. When measured using the artificial substrate 2′‐(4‐methylumbelliferyl)‐α‐d‐N‐acetylneuraminic acid (4‐MU‐NANA), sialidase activity of monocytes increased up to 14‐fold per milligram of total protein after cells had differentiated into macrophages. In these same cells, the specific activity of other cellular proteins (e.g. β‐galactosidase, cathepsin A and alkaline phosphatase) increased only two‐ to fourfold during differentiation of monocytes. Sialidase activity measured with 4‐MU‐NANA resulted from increased expression of Neu1, as removal of Neu1 from the cell lysate by immunoprecipitation eliminated more than 99% of detectable sialidase activity. When exogenous mixed bovine gangliosides were used as substrates, there was a twofold increase in sialidase activity per milligram of total protein in monocyte‐derived macrophages in comparison to monocytes. The increased activity measured with mixed gangliosides was not affected by removal of Neu1, suggesting that the expression of a sialidase other than Neu1 was present in macrophages. The amount of Neu1 and Neu3 RNAs detected by real time RT‐PCR increased as monocytes differentiated into macrophages, whereas the amount of Neu4 RNA decreased. No RNA encoding the cytosolic sialidase (Neu2) was detected in monocytes or macrophages. Western blot analysis using specific antibodies showed that the amount of Neu1 and Neu3 proteins increased during monocyte differentiation. Thus, the differentiation of monocytes into macrophages is associated with regulation of the expression of at least three distinct cellular sialidases, with specific up‐regulation of the enzyme activity of only Neu1.
Journal of Cellular Biochemistry | 2006
Eric Tremblay; Joëlle Auclair; Edgar Delvin; Emile Levy; Daniel Ménard; Alexey V. Pshezhetsky; Nathalie Rivard; Ernest G. Seidman; Daniel Sinnett; Pierre H. Vachon; Jean-François Beaulieu
cDNA microarray technology enables detailed analysis of gene expression throughout complex processes such as differentiation. The aim of this study was to analyze the gene expression profile of normal human intestinal epithelial cells using cell models that recapitulate the crypt‐villus axis of intestinal differentiation in comparison with the widely used Caco‐2 cell model. cDNA microarrays (19,200 human genes) and a clustering algorithm were used to identify patterns of gene expression in the crypt‐like proliferative HIEC and tsFHI cells, and villus epithelial cells as well as Caco‐2/15 cells at two distinct stages of differentiation. Unsupervised hierarchical clustering analysis of global gene expression among the cell lines identified two branches: one for the HIEC cells versus a second comprised of two sub‐groups: (a) the proliferative Caco‐2 cells and (b) the differentiated Caco‐2 cells and closely related villus epithelial cells. At the gene level, supervised hierarchical clustering with 272 differentially expressed genes revealed distinct expression patterns specific to each cell phenotype. We identified several upregulated genes that could lead to the identification of new regulatory pathways involved in cell differentiation and carcinogenesis. The combined use of microarray analysis and human intestinal cell models thus provides a powerful tool for establishing detailed gene expression profiles of proliferative to terminally differentiated intestinal cells. Furthermore, the molecular differences between the normal human intestinal cell models and Caco‐2 cells clearly point out the strengths and limitations of this widely used experimental model for studying intestinal cell proliferation and differentiation. J. Cell. Biochem. 99: 1175–1186, 2006.
Brain | 2015
Carla Martins; Helena Hůlková; Larbi Dridi; Virginie Dormoy-Raclet; Lubov Grigoryeva; Yoo Choi; Alex Langford-Smith; Fiona Wilkinson; Kazuhiro Ohmi; Graziella DiCristo; Edith Hamel; Jérôme Ausseil; David Cheillan; Alain Moreau; Eva Svobodová; Zuzana Hájková; Markéta Tesařová; Hana Hansikova; Brian Bigger; Martin Hrebicek; Alexey V. Pshezhetsky
Severe progressive neurological paediatric disease mucopolysaccharidosis III type C is caused by mutations in the HGSNAT gene leading to deficiency of acetyl-CoA: α-glucosaminide N-acetyltransferase involved in the lysosomal catabolism of heparan sulphate. To understand the pathophysiology of the disease we generated a mouse model of mucopolysaccharidosis III type C by germline inactivation of the Hgsnat gene. At 6-8 months mice showed hyperactivity, and reduced anxiety. Cognitive memory decline was detected at 10 months and at 12-13 months mice showed signs of unbalanced hesitant walk and urinary retention. Lysosomal accumulation of heparan sulphate was observed in hepatocytes, splenic sinus endothelium, cerebral microglia, liver Kupffer cells, fibroblasts and pericytes. Starting from 5 months, brain neurons showed enlarged, structurally abnormal mitochondria, impaired mitochondrial energy metabolism, and storage of densely packed autofluorescent material, gangliosides, lysozyme, phosphorylated tau, and amyloid-β. Taken together, our data demonstrate for the first time that deficiency of acetyl-CoA: α-glucosaminide N-acetyltransferase causes lysosomal accumulation of heparan sulphate in microglial cells followed by their activation and cytokine release. They also show mitochondrial dysfunction in the neurons and neuronal loss explaining why mucopolysaccharidosis III type C manifests primarily as a neurodegenerative disease.
Journal of Human Genetics | 2000
Yasunori Naganawa; Kohji Itoh; Michie Shimmoto; Kyoko Takiguchi; Hirofumi Doi; Yuzuru Nishizawa; Takayoshi Kobayashi; Sachiko Kamei; Kiven E. Lukong; Alexey V. Pshezhetsky; Hitoshi Sakuraba
AbstractTo gain insight into the pathogenesis of sialidosis type 1, we performed molecular investigations of two unrelated Japanese patients. Both of them are compound heterozygotes for base substitutions of 649G-to-A and 727G-to-A, which result in amino acid alterations V217M and G243R, respectively. Using homology modeling, the structure of human lysosomal neuraminidase was constructed and the structural changes caused by these missense mutations were deduced. The predicted change due to V217M was smaller than that caused by G243R, the latter resulting in a drastic, widespread alteration. The overexpressed gene products containing these mutations had the same molecular weight as that of the wild type, although the amounts of the products were moderately decreased. A biochemical study demonstrated that the expressed neuraminidase containing a V217M mutation was partly transported to lysosomes and showed residual enzyme activity, although a G243R mutant was retained in the endoplasmic reticulum/Golgi area and had completely lost the enzyme activity. Considering the data, we surmise that the V217M substitution may be closely associated with the phenotype of sialidosis type 1 with a late onset and moderate clinical course.
PLOS ONE | 2014
Victoria Smutova; Amgad Albohy; Xuefang Pan; Elena Korchagina; Taeko Miyagi; Nicolai V. Bovin; Christopher W. Cairo; Alexey V. Pshezhetsky
The removal of sialic acid (Sia) residues from glycoconjugates in vertebrates is mediated by a family of neuraminidases (sialidases) consisting of Neu1, Neu2, Neu3 and Neu4 enzymes. The enzymes play distinct physiological roles, but their ability to discriminate between the types of linkages connecting Sia and adjacent residues and between the identity and arrangement of the underlying sugars has never been systematically studied. Here we analyzed the specificity of neuraminidases by studying the kinetics of hydrolysis of BODIPY-labeled substrates containing common mammalian sialylated oligosaccharides: 3′Sia-LacNAc, 3′SiaLac, SiaLex, SiaLea, SiaLec, 6′SiaLac, and 6′SiaLacNAc. We found significant differences in substrate specificity of the enzymes towards the substrates containing α2,6-linked Sia, which were readily cleaved by Neu3 and Neu1 but not by Neu4 and Neu2. The presence of a branching 2-Fuc inhibited Neu2 and Neu4, but had almost no effect on Neu1 or Neu3. The nature of the sugar residue at the reducing end, either glucose (Glc) or N-acetyl-D-glucosamine (GlcNAc) had only a minor effect on all neuraminidases, whereas core structure (1,3 or 1,4 bond between D-galactose (Gal) and GlcNAc) was found to be important for Neu4 strongly preferring β3 (core 1) to β4 (core 2) isomer. Neu3 and Neu4 were in general more active than Neu1 and Neu2, likely due to their preference for hydrophobic substrates. Neu2 and Neu3 were examined by molecular dynamics to identify favorable substrate orientations in the binding sites and interpret the differences in their specificities. Finally, using knockout mouse models, we confirmed that the substrate specificities observed in vitro were recapitulated in enzymes found in mouse brain tissues. Our data for the first time provide evidence for the characteristic substrate preferences of neuraminidases and their ability to discriminate between distinct sialoside targets.
Journal of Biological Chemistry | 2012
Lara Gushulak; Richard Hemming; Dianna C. Martin; Volkan Seyrantepe; Alexey V. Pshezhetsky; Barbara Triggs-Raine
Background: The individual contribution of HYAL1 and β-hexosaminidase to glycosaminoglycan (GAG) degradation is not fully understood. Results: Mice deficient in both of these enzymes exhibit global accumulation of hyaluronan and related GAGs. Conclusion: A functional redundancy exists between HYAL1 and β-hexosaminidase. Significance: Investigating the contribution of individual hyaluronidases and exoglycosidases is critical to understanding the overall pathways of GAG catabolism. Hyaluronan (HA), a member of the glycosaminoglycan (GAG) family, is a critical component of the extracellular matrix. A model for HA degradation that invokes the activity of both hyaluronidases and exoglycosidases has been advanced. However, no in vivo studies have been done to determine the extent to which these enzymes contribute to HA breakdown. Herein, we used mouse models to investigate the contributions of the endoglycosidase HYAL1 and the exoglycosidase β-hexosaminidase to the lysosomal degradation of HA. We employed histochemistry and fluorophore-assisted carbohydrate electrophoresis to determine the degree of HA accumulation in mice deficient in one or both enzyme activities. Global HA accumulation was present in mice deficient in both enzymes, with the highest levels found in the lymph node and liver. Chondroitin, a GAG similar in structure to HA, also broadly accumulated in mice deficient in both enzymes. Accumulation of chondroitin sulfate derivatives was detected in mice deficient in both enzymes, as well as in β-hexosaminidase-deficient mice, indicating that both enzymes play a significant role in chondroitin sulfate breakdown. Extensive accumulation of HA and chondroitin when both enzymes are lacking was not observed in mice deficient in only one of these enzymes, suggesting that HYAL1 and β-hexosaminidase are functionally redundant in HA and chondroitin breakdown. Furthermore, accumulation of sulfated chondroitin in tissues provides in vivo evidence that both HYAL1 and β-hexosaminidase cleave chondroitin sulfate, but it is a preferred substrate for β-hexosaminidase. These studies provide in vivo evidence to support and extend existing knowledge of GAG breakdown.
Journal of Human Genetics | 2002
Kohji Itoh; Yasunori Naganawa; Fumiko Matsuzawa; Seiichi Aikawa; Hirofumi Doi; Naokazu Sasagasako; Takeshi Yamada; Jun-ichi Kira; Takuro Kobayashi; Alexey V. Pshezhetsky; Hitoshi Sakuraba
AbstractThree novel missense mutations in the human lysosomal sialidase gene causing amino acid substitutions (P80L, W240R, and P316S) in the coding region were identified in two Japanese sialidosis patients. One patient with a severe, congenital form of type 2 sialidosis was a compound heterozygote for 239C-to-T (P80L) and 718T-to-C (W240R). The other patient with a mild juvenile-onset phenotype (type 1) was a homozygote for the base substitution of 946C-to-T (P316S). None of these mutant cDNA products showed enzymatic activity toward an artificial substrate when coexpressed in galactosialidosis fibroblastic cells together with protective protein/cathepsin A (PPCA). All mutants showed a reticular immunofluorescence distribution when coexpressed with the PPCA gene in COS-1 cells, suggesting that the gene products were retained in the endoplasmic reticulum/Golgi area or rapidly degraded in the lysosomes. Homology modeling of the structural changes introduced by the mutations predicted that the P80L and P316S transversions cause large conformational changes including the active site residues responsible for binding the sialic acid carboxylate group. The W240R substitution was deduced to influence the molecular surface structure of a limited region of the constructed models, which was also influenced by previously identified V217M and G243R transversions.