Alexey Vertegel
Clemson University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexey Vertegel.
Neurochemical Research | 2013
Abhay K. Varma; Arabinda Das; Gerald C. Wallace; John N. Barry; Alexey Vertegel; Swapan K. Ray; Naren L. Banik
The incidence of acute and chronic spinal cord injury (SCI) in the United States is more than 10,000 per year, resulting in 720 cases per million persons enduring permanent disability each year. The economic impact of SCI is estimated to be more than 4 billion dollars annually. Preclinical studies, case reports, and small clinical trials suggest that early treatment may improve neurological recovery. To date, no proven therapeutic modality exists that has demonstrated a positive effect on neurological outcome. Emerging data from recent preclinical and clinical studies offer hope for this devastating condition. This review gives an overview of current basic research and clinical studies for the treatment of SCI.
Journal of Cerebral Blood Flow and Metabolism | 2013
Xiang Yun; Victor Maximov; Jin Yu; Hon g Zhu; Alexey Vertegel; Mark S. Kindy
Stroke is one of the major causes of death and disability in the United States. After cerebral ischemia and reperfusion injury, the generation of reactive oxygen species (ROS) and reactive nitrogen species may contribute to the disease process through alterations in the structure of DNA, RNA, proteins, and lipids. We generated various nanoparticles (liposomes, polybutylcyanoacrylate (PBCA), or poly(lactide-co-glycolide) (PLGA)) that contained active superoxide dismutase (SOD) enzyme (4,000 to 20,000 U/kg) in the mouse model of cerebral ischemia and reperfusion injury to determine the impact of these molecules. In addition, the nanoparticles were untagged or tagged with nonselective antibodies or antibodies directed against the N-methyl-D-aspartate (NMDA) receptor 1. The nanoparticles containing SOD protected primary neurons in vitro from oxygen-glucose deprivation (OGD) and limited the extent of apoptosis. The nanoparticles showed protection against ischemia and reperfusion injury when applied after injury with a 50% to 60% reduction in infarct volume, reduced inflammatory markers, and improved behavior in vivo. The targeted nanoparticles not only showed enhanced protection but also showed localization to the CA regions of the hippocampus. Nanoparticles alone were not effective in reducing infarct volume. These studies show that targeted nanoparticles containing protective factors may be viable candidates for the treatment of stroke.
Biotechnology and Bioengineering | 2011
Vladimir Reukov; Victor Maximov; Alexey Vertegel
Poly(butyl cyanoacrylate) (PBCA) nanoparticles (NPs) can penetrate blood–brain barrier providing the means for drug delivery to the central nervous system. Here, we study attachment of superoxide dismutase (SOD) and anti‐glutamate N‐methyl D‐aspartate receptor 1 (NR1) antibody to PBCA NPs with the ultimate goal to design neuroprotective therapeutics for treatment of secondary spinal cord injury. Synthesis of monodispersed, ∼200 nm‐diameter PBCA NPs was performed using polymerization at pH 2.0 with Dextran 70,000 as the stabilizer. Sulfo‐HSAB spacers were used to covalently attach SOD and NR1 antibodies to the dextran‐coated NPs. The prepared protein–NP conjugates possessed SOD activity and were capable of binding to rat cerebellar neurons. Thus, SOD and NR1 antibodies may be simultaneously attached to PBCA NPs while retaining at least a fraction of enzymatic activity and receptor‐binding ability. The conjugates showed neuroprotective efficacy in vitro with rat cerebellar cell cultures challenged by superoxide. Biotechnol. Bioeng. 2011;108: 243–252.
Antimicrobial Agents and Chemotherapy | 2011
Rohan Satishkumar; Sriram Sankar; Yuliya Yurko; Amy E. Lincourt; John I. Shipp; B. Todd Heniford; Alexey Vertegel
ABSTRACT Bacterial infections by antibiotic-resistant Staphylococcus aureus strains are among the most common postoperative complications in surgical hernia repair with synthetic mesh. Surface coating of medical devices/implants using antibacterial peptides and enzymes has recently emerged as a potentially effective method for preventing infections. The objective of this study was to evaluate the in vitro antimicrobial activity of hernia repair meshes coated by the antimicrobial enzyme lysostaphin at different initial concentrations. Lysostaphin was adsorbed on pieces of polypropylene (Ultrapro) mesh with binding yields of ∼10 to 40% at different coating concentrations of between 10 and 500 μg/ml. Leaching of enzyme from the surface of all the samples was studied in 2% (wt/vol) bovine serum albumin in phosphate-buffered saline buffer at 37°C, and it was found that less than 3% of adsorbed enzyme desorbed from the surface after 24 h of incubation. Studies of antibacterial activity against a cell suspension of S. aureus were performed using turbidity assay and demonstrated that the small amount of enzyme leaching from the mesh surface contributes to the lytic activity of the lysostaphin-coated samples. Colony counting data from the broth count (model for bacteria in wound fluid) and wash count (model for colonized bacteria) for the enzyme-coated samples showed significantly decreased numbers of CFU compared to uncoated samples (P < 0.05). A pilot in vivo study showed a dose-dependent efficacy of lysostaphin-coated meshes in a rat model of S. aureus infection. The antimicrobial activity of the lysostaphin-coated meshes suggests that such enzyme-leaching surfaces could be efficient at actively resisting initial bacterial adhesion and preventing subsequent colonization of hernia repair meshes.
Biotechnology and Bioengineering | 2008
Rohan Satishkumar; Alexey Vertegel
Use of antimicrobial enzymes covalently attached to nanoparticles is of great interest as an antibiotic‐free approach to treat microbial infections. Intrinsic properties of nanoparticles can also be used to add functionality to their conjugates with biomolecules. Here, we show in a model system that nanoparticle charge can be used to enhance delivery and increase bactericidal activity of an antimicrobial enzyme, lysozyme. Hen egg lysozyme was covalently attached to two types of polystyrene latex nanoparticles: positively charged, containing aliphatic amine surface groups, and negatively charged, containing sulfate and chloromethyl surface groups. In the case of bacterial lysis assay with a Gram‐positive bacteria Micrococcus lysodeikticus, activity of lysozyme conjugated to positively charged nanoparticles was approximately twice as large as that of free lysozyme, while lysozyme conjugated to negatively charged nanoparticles showed little detectable activity. At the same time, when assayed using a low‐molecular weight oligosaccharide substrate, lysozyme attached to both positively and negatively charged nanoparticles showed slightly lower activity than free enzyme. A possible explanation of these results is that lysozyme attached to negatively charged nanoparticles cannot be effectively targeted to the bacteria because of the electrostatic Coulombic repulsion from the negatively charged bacterial cell walls, whereas lysozyme conjugated to positively charged nanoparticles was targeted better than free enzyme due to stronger electrostatic attraction to bacteria. Zeta potential measurements confirmed the validity of this hypothesis. Thus, nanoparticle charge is an important factor that can be used to control targeting and activity of protein‐nanoparticle conjugates. Biotechnol. Bioeng. 2008;100: 403–412.
ACS Nano | 2010
Maxim P. Nikiforov; Gary L. Thompson; Vladimir Reukov; Stephen Jesse; Senli Guo; Brian J. Rodriguez; Katyayani Seal; Alexey Vertegel; Sergei V. Kalinin
Harnessing electrical bias-induced mechanical motion on the nanometer and molecular scale is a critical step toward understanding the fundamental mechanisms of redox processes and implementation of molecular electromechanical machines. Probing these phenomena in biomolecular systems requires electromechanical measurements be performed in liquid environments. Here we demonstrate the use of band excitation piezoresponse force microscopy for probing electromechanical coupling in amyloid fibrils. The approaches for separating the elastic and electromechanical contributions based on functional fits and multivariate statistical analysis are presented. We demonstrate that in the bulk of the fibril the electromechanical response is dominated by double-layer effects (consistent with shear piezoelectricity of biomolecules), while a number of electromechanically active hot spots possibly related to structural defects are observed.
Nanotechnology | 2007
Sergei V. Kalinin; Brian J. Rodriguez; Stephen Jesse; Katyayani Seal; Roger Proksch; Sophia Hohlbauch; Irene Revenko; Gary Lee Thompson; Alexey Vertegel
Electromechanical coupling is ubiquitous in biological systems, with examples ranging from simple piezoelectricity in calcified and connective tissues to voltage-gated ion channels, energy storage in mitochondria, and electromechanical activity in cardiac myocytes and outer hair cell stereocilia. Piezoresponse force microscopy (PFM) originally emerged as a technique to study electromechanical phenomena in ferroelectric materials, and in recent years has been employed to study a broad range of non-ferroelectric polar materials, including piezoelectric biomaterials. At the same time, the technique has been extended from ambient to liquid imaging on model ferroelectric systems. Here, we present results on local electromechanical probing of several model cellular and biomolecular systems, including insulin and lysozyme amyloid fibrils, breast adenocarcinoma cells, and bacteriorhodopsin in a liquid environment. The specific features of PFM operation in liquid are delineated and bottlenecks on the route towards nanometre-resolution electromechanical imaging of biological systems are identified.
Nanotechnology | 2010
Victor Maximov; Vladimir Reukov; John N. Barry; C Cochrane; Alexey Vertegel
Hyperlipidemia, a condition associated with atherosclerosis, can develop because of the lack of low density lipoprotein (LDL) receptors in hepatocytes. Since injected polymeric nanoparticles are quickly taken up by the liver Kupffer cells, we hypothesize that it is possible to enhance LDL delivery to the liver through the use of LDL-absorbing nanoparticles. Here, we demonstrate the feasibility of the proposed approach in vitro. We used biodegradable and biocompatible polylactide nanoparticles (approximately 100 nm in diameter) with covalently attached apolipoprotein B100 antibody to adsorb LDLs at physiologically relevant concentrations. We showed that up to sixfold decreases of LDL levels can be achieved in vitro upon treatment of LDL suspensions (500 mg dl( - 1)) with anti-apoB100-nanoparticle conjugates. The study of the uptake of the antibody-nanoparticle-LDL complexes by cells was performed using a mouse macrophage cell line (RAW 264.7) as a model for liver Kupffer cells. We found that macrophages can quickly take up antibody-nanoparticle-LDL complexes and digest them within 24 h. No evidence of cytotoxicity was observed for the experimental conditions used in this study.
Nanotechnology | 2010
Joo Hyon Noh; Maxim P. Nikiforov; Sergei V. Kalinin; Alexey Vertegel; Philip D. Rack
In this paper, the fabrication and electrical and electromechanical characterization of insulated scanning probes have been demonstrated in liquid solutions. The silicon cantilevers were sequentially coated with chromium and silicon dioxide, and the silicon dioxide was selectively etched at the tip apex using focused-electron-beam-induced etching (FEBIE) with XeF(2). The chromium layer acted not only as the conductive path from the tip, but also as an etch-resistant layer. This insulated scanning probe fabrication process is compatible with any commercial AFM tip and can be used to easily tailor the scanning probe tip properties because FEBIE does not require lithography. The suitability of the fabricated probes is demonstrated by imaging of a standard topographical calibration grid as well as piezoresponse force microscopy (PFM) and electrical measurements in ambient and liquid environments.
Nanotechnology | 2009
Maxim P. Nikiforov; Vladimir Reukov; Gary Lee Thompson; Alexey Vertegel; Senli Guo; Sergei V. Kalinin; Stephen Jesse
Functional recognition imaging in scanning probe microscopy (SPM) using artificial neural network identification is demonstrated. This approach utilizes statistical analysis of complex SPM responses at a single spatial location to identify the target behavior, which is reminiscent of associative thinking in the human brain, obviating the need for analytical models. We demonstrate, as an example of recognition imaging, rapid identification of cellular organisms using the difference in electromechanical activity over a broad frequency range. Single-pixel identification of model Micrococcus lysodeikticus and Pseudomonas fluorescens bacteria is achieved, demonstrating the viability of the method.