Alexey Yakushenko
Forschungszentrum Jülich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexey Yakushenko.
Analytical Chemistry | 2013
Alexey Yakushenko; Enno Kätelhön; Bernhard Wolfrum
Real-time investigations of neurotransmitter release provide a direct insight on the mechanisms involved in synaptic communication. Carbon fiber microelectrodes are state-of-the-art tools for electrochemical measurements of single vesicle neurotransmitter release. Yet, they lack high-throughput capabilities that are required for collecting robust statistically significant data across multiple samples. Here, we present a chip-based recording system enabling parallel in vitro measurements of individual neurotransmitter release events from cells, cultured directly on planar multielectrode arrays. The applicability of this cell-based platform to pharmacological screening is demonstrated by resolving minute concentration-dependent effects of the dopamine reuptake inhibitor nomifensine on recorded single-vesicle release events from PC12 cells. The experimental results, showing an increased half-time of the recorded events, are complemented by an analytical model for the verification of drug action.
Accounts of Chemical Research | 2016
Bernhard Wolfrum; Enno Kätelhön; Alexey Yakushenko; Kay J. Krause; Nouran Adly; Martin Hüske; Philipp Rinklin
Micro- and nanofabriation technologies have a tremendous potential for the development of powerful sensor array platforms for electrochemical detection. The ability to integrate electrochemical sensor arrays with microfluidic devices nowadays provides possibilities for advanced lab-on-a-chip technology for the detection or quantification of multiple targets in a high-throughput approach. In particular, this is interesting for applications outside of analytical laboratories, such as point-of-care (POC) or on-site water screening where cost, measurement time, and the size of individual sensor devices are important factors to be considered. In addition, electrochemical sensor arrays can monitor biological processes in emerging cell-analysis platforms. Here, recent progress in the design of disease model systems and organ-on-a-chip technologies still needs to be matched by appropriate functionalities for application of external stimuli and read-out of cellular activity in long-term experiments. Preferably, data can be gathered not only at a singular location but at different spatial scales across a whole cell network, calling for new sensor array technologies. In this Account, we describe the evolution of chip-based nanoscale electrochemical sensor arrays, which have been developed and investigated in our group. Focusing on design and fabrication strategies that facilitate applications for the investigation of cellular networks, we emphasize the sensing of redox-active neurotransmitters on a chip. To this end, we address the impact of the device architecture on sensitivity, selectivity as well as on spatial and temporal resolution. Specifically, we highlight recent work on redox-cycling concepts using nanocavity sensor arrays, which provide an efficient amplification strategy for spatiotemporal detection of redox-active molecules. As redox-cycling electrochemistry critically depends on the ability to miniaturize and integrate closely spaced electrode systems, the fabrication of suitable nanoscale devices is of utmost importance for the development of this advanced sensor technology. Here, we address current challenges and limitations, which are associated with different redox cycling sensor array concepts and fabrication approaches. State-of-the-art micro- and nanofabrication technologies based on optical and electron-beam lithography allow precise control of the device layout and have led to a new generation of electrochemical sensor architectures for highly sensitive detection. Yet, these approaches are often expensive and limited to clean-room compatible materials. In consequence, they lack possibilities for upscaling to high-throughput fabrication at moderate costs. In this respect, self-assembly techniques can open new routes for electrochemical sensor design. This is true in particular for nanoporous redox cycling sensor arrays that have been developed in recent years and provide interesting alternatives to clean-room fabricated nanofluidic redox cycling devices. We conclude this Account with a discussion of emerging fabrication technologies based on printed electronics that we believe have the potential of transforming current redox cycling concepts from laboratory tools for fundamental studies and proof-of-principle analytical demonstrations into high-throughput devices for rapid screening applications.
Analytical Chemistry | 2012
Alexey Yakushenko; Jan Schnitker; Bernhard Wolfrum
We present a disposable system for recording neurotransmitter release from individual cells in vitro. A simple yet reliable microelectrode fabrication process is introduced using screen-printed carbon paste. It allows rapid fabrication of devices at low costs without standard clean-room technology. We demonstrate functionality of the system by real-time observation of vesicle release from single PC12 (rat pheochromocytoma) cells. The cells are cultured directly on the chip and can be used for immediate or long-term in vitro experiments. Thus, our approach may serve as a platform for pharmacological cell culture studies.
Nanotechnology | 2012
Manuel Wesche; Martin Hüske; Alexey Yakushenko; Dorothea Brüggemann; Dirk Mayer; Andreas Offenhäusser; Bernhard Wolfrum
The design of electrode interfaces has a strong impact on cell-based bioelectronic applications. We present a new type of microelectrode array chip featuring a nanoporous alumina interface. The chip is fabricated in a combination of top-down and bottom-up processes using state-of-the-art clean room technology and self-assembled generation of nanopores by aluminum anodization. The electrode characteristics are investigated in phosphate buffered saline as well as under cell culture conditions. We show that the modified microelectrodes exhibit decreased impedance compared to planar microelectrodes, which is caused by a nanostructuring effect of the underlying gold during anodization. The stability and biocompatibility of the device are demonstrated by measuring action potentials from cardiomyocyte-like cells growing on top of the chip. Cross sections of the cell-surface interface reveal that the cell membrane seals the nanoporous alumina layer without bending into the sub-50 nm apertures. The nanoporous microelectrode array device may be used as a platform for combining extracellular recording of cell activity with stimulating topographical cues.
Analytical Chemistry | 2015
Kay J. Krause; Alexey Yakushenko; Bernhard Wolfrum
We introduce the stochastic amperometric detection of silver nanoparticles on-chip using a microelectrode array. The technique combines the advantages of parallel and low-noise recordings at individually addressable microelectrodes. We demonstrate the detection of subpicomolar concentrations of silver nanoparticles with a diameter of 10 nm at sampling rates in the kilohertz regime for each channel. By comparison to random walk simulations, we show that the sensitivity of a single measurement is mainly limited by adsorption of nanoparticles at the surface of the chips and the measurement time.
Lab on a Chip | 2014
Alexey Yakushenko; Dirk Mayer; Johan Buitenhuis; Andreas Offenhäusser; Bernhard Wolfrum
Electrochemical techniques rely on the stability of a defined reference potential. Due to the need for miniaturization, electrochemical lab-on-a-chip platforms often employ Ag/AgCl quasi-reference electrodes for this purpose. Here, we report on electrochemical artifacts resulting from nanoparticle-electrode collisions originating from standard chlorinated silver wires.
ACS omega | 2017
Yitzchak Rosen; Alexey Yakushenko; Andreas Offenhäusser; Shlomo Magdassi
Printing conducting copper interconnections on plastic substrates is of growing interest in the field of printed electronics. Photonic curing of copper inks with intense pulsed light (IPL) is a promising process as it is very fast and thus can be incorporated in roll-to-roll production. We report on using IPL for obtaining conductive patterns from inks composed of submicron particles of copper formate, a copper precursor that has a self-reduction property. Decomposition of copper formate can be performed by IPL and is affected both by the mode of energy application and the properties of the printed precursor layer. The energy application mode was controlled by altering three pulse parameters: duration, intensity, and repetitions at 1 Hz. As the decomposition results from energy transfer via light absorption, carbon nanotubes (CNTs) were added to the ink to increase the absorbance. We show that there is a strict set of IPL parameters necessary to obtain conductive copper patterns. Finally, we show that by adding as little as 0.5 wt % single-wall CNTs to the ink the absorptance was enhanced by about 50% and the threshold energy required to obtain a conductive pattern decreased by ∼25%. These results have major implications for tailoring inks intended for IPL processing.
Journal of Biomedical Optics | 2013
Alexey Yakushenko; Zheng Gong; Vanessa Maybeck; Boris Hofmann; Erdan Gu; Martin D. Dawson; Andreas Offenhäusser; Bernhard Wolfrum
Abstract. We present an optoelectrical device capable of in vitro optical stimulation and electrophysiological recording. The device consists of an array of micropixellated InGaN light-emitting diodes coupled to a custom-made ultrathin planar microelectrode array. Cells can be cultured directly on the chip for short- and long-term electrophysiological experiments. To show the functionality of the device, we transfected a cardiomyocyte-like cell line (HL-1) with a light-sensitive protein channelrhodopsin. We monitored action potentials of individual, spontaneously beating, HL-1 cells growing on the chip by extracellular electrical recordings. On-chip optical stimulation was demonstrated by triggering network activity in a confluent HL-1 cell culture and visualized by calcium imaging. We see the potential of our system for electrophysiological experiments with optogenetically modified cells. Optical stimulation can be performed directly on the chip without additional optical components or external light sources.
RSC Advances | 2017
Nouran Adly; Bernd Bachmann; Kay J. Krause; Andreas Offenhäusser; Bernhard Wolfrum; Alexey Yakushenko
Multilayer inkjet printing is emerging as a robust platform for fabricating flexible electronic devices over a large area. Here, we report a straightforward, scalable and inexpensive method for printing multilayer three-dimensional nanoporous redox cycling devices with a tunable nanometer gap for electrochemical sensing. The fabrication of the electrochemical redox cycling device is based on vertical stacking of two conductive electrodes made of carbon and gold nanoparticle inks. In this configuration, the two electrodes are parallel to each other and electrically separated by a layer of polystyrene nanospheres. As the top and the bottom electrodes are biased to, respectively, oxidizing and reducing potentials, repetitive cycling of redox molecules between them generates a large current amplification. We show that a vertical interelectrode spacing down to several hundred nanometers with high precision using inkjet printing is possible. The printed sensors demonstrate excellent performance in electrochemical sensing of ferrocene dimethanol as a redox-active probe. A collection efficiency of 100% and current amplification up to 30-fold could be obtained. Our method provides a low cost and versatile means for sensitive electrochemical measurements eliminating the need for sophisticated fabrication methods, which could prove useful for sensitive point-of-care diagnostics devices.
Analytical Chemistry | 2016
Kay J. Krause; Nouran Adly; Alexey Yakushenko; Jan Schnitker; Dirk Mayer; Andreas Offenhäusser; Bernhard Wolfrum
We investigate the influence of self-assembled alkanethiol monolayers at the surface of platinum microelectrode arrays on the stochastic amperometric detection of citrate-stabilized silver nanoparticles in aqueous solutions. The measurements were performed using a microelectrode array featuring 64 individually addressable electrodes that are recorded in parallel with a sampling rate of 10 kHz for each channel. We show that both the functional end group and the total length of the alkanethiol influence the charge transfer. Three different terminal groups, an amino, a hydroxyl, and a carboxyl, were investigated using two different molecule lengths of 6 and 11 carbon atoms. Finally, we show that a monolayer of alkanethiols with a length of 11 carbon atoms and a carboxyl terminal group can efficiently block the charge transfer of free nanoparticles in an aqueous solution.