Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexia Eliades is active.

Publication


Featured researches published by Alexia Eliades.


Journal of Thrombosis and Haemostasis | 2010

A new role for the A2b adenosine receptor in regulating platelet function

Dan Yang; Hongjie Chen; Milka Koupenova; Shannon H. Carroll; Alexia Eliades; Jane E. Freedman; Paul Toselli; Katya Ravid

Summary.  Background: Activation of platelets is a critical component of atherothrombosis and plays a central role in the progression of unstable cardiovascular syndromes. Adenosine, acting through adenosine receptors, increases intracellular cAMP levels and inhibits platelet aggregation. The A2a adenosine receptor has already been recognized as a mediator of adenosine‐dependent effects on platelet aggregation, and here we present a new role for the A2b adenosine receptor (A2bAR) in this process. Methods and Results: As compared with platelets from wild‐type controls, platelets derived from A2bAR knockout mice have significantly greater ADP receptor activation‐induced aggregation. Although mouse megakaryocytes and platelets express low levels of the A2bAR transcript, this gene is highly upregulated following injury and systemic inflammation in vivo. Under these conditions, A2bAR‐mediated inhibition of platelet aggregation significantly increases. Our studies also identify a novel mechanism by which the A2bAR could regulate platelet aggregation; namely, ablation of the A2bAR leads to upregulated expression of the P2Y1 ADP receptor, whereas A2bAR‐mediated or direct elevation of cAMP has the opposite effect. Thus, the A2bAR regulates platelet function beyond mediating the immediate effect of adenosine on aggregation. Conclusions: Taken together, these investigations show for the first time that the platelet A2bAR is upregulated under stress in vivo, plays a significant role in regulating ADP receptor expression, and inhibits agonist‐induced platelet aggregation.


Journal of Biological Chemistry | 2011

Control of megakaryocyte expansion and bone marrow fibrosis by lysyl oxidase

Alexia Eliades; Nikolaos Papadantonakis; Ajoy Bhupatiraju; Kelley A. Burridge; Hillary Johnston-Cox; Anna Rita Migliaccio; John D. Crispino; Hector A. Lucero; Philip C. Trackman; Katya Ravid

Lysyl oxidase (LOX), a matrix cross-linking protein, is known to be selectively expressed and to enhance a fibrotic phenotype. A recent study of ours showed that LOX oxidizes the PDGF receptor-β (PDGFR-β), leading to amplified downstream signaling. Here, we examined the expression and functions of LOX in megakaryocytes (MKs), the platelet precursors. Cells committed to the MK lineage undergo mitotic proliferation to yield diploid cells, followed by endomitosis and acquisition of polyploidy. Intriguingly, LOX expression is detected in diploid-tetraploid MKs, but scarce in polyploid MKs. PDGFR-BB is an inducer of mitotic proliferation in MKs. LOX inhibition with β-aminopropionitrile reduces PDGFR-BB binding to cells and downstream signaling, as well as its proliferative effect on the MK lineage. Inhibition of LOX activity has no influence on MK polyploidy. We next rationalized that, in a system with an abundance of low ploidy MKs, LOX could be highly expressed and with functional significance. Thus, we resorted to GATA-1low mice, where there is an increase in low ploidy MKs, augmented levels of PDGF-BB, and an extensive matrix of fibers. MKs from these mice display high expression of LOX, compared with control mice. Importantly, treatment of GATA-1low mice with β-aminopropionitrile significantly improves the bone marrow fibrotic phenotype, and MK number in the spleen. Thus, our in vitro and in vivo data support a novel role for LOX in regulating MK expansion by PDGF-BB and suggest LOX as a new potential therapeutic target for myelofibrosis.


Blood | 2009

Differential expression of NADPH oxidases in megakaryocytes and their role in polyploidy

Donald J. McCrann; Alexia Eliades; Maria Makitalo; Kuniharu Matsuno; Katya Ravid

Megakaryocytes (MKs) undergo an endomitotic cell cycle, leading to polyploidy. We examined the expression of the flavoproteins and oxidative stress-promoting enzymes, NADPH oxidases (Noxs), in MKs because of their known role in promoting the cell cycle. Although the expression of Nox isoforms varies between cell types, they are induced at the mRNA level by mitogenic stimuli. Western blotting or reverse transcription-polymerase chain reaction of purified mouse MKs isolated from thrombopoietin (TPO)-treated bone marrow (BM) cultures indicated high expression of Nox1, a weak expression of Nox4, and no significant expression of Nox2. Immunofluorescence of freshly isolated MKs confirmed strong expression of Nox1 in one-third of MKs, whereas Nox1 staining was detected in nearly all MKs in TPO-stimulated BM cultures. Treatment of mouse BM cultures with Nox inhibitors resulted in accumulation of MKs with low DNA content levels and significant reduction of higher ploidy MKs. Purified, Nox-inhibited MKs showed a notable decrease in the level of the G(1) phase cyclin E, a cyclin associated with MK polyploidy, and its up-regulation restored most of the effect of Nox inhibitors. Hence, this study shows the expression of Nox isoforms in MKs and highlights a potential role of flavoproteins in promoting polyploidization in this lineage.


Journal of Biological Chemistry | 2010

New Roles for Cyclin E in Megakaryocytic Polyploidization

Alexia Eliades; Nikolaos Papadantonakis; Katya Ravid

Megakaryocytes are platelet precursor cells that undergo endomitosis. During this process, repeated rounds of DNA synthesis are characterized by lack of late anaphase and cytokinesis. Physiologically, the majority of the polyploid megakaryocytes in the bone marrow are cell cycle arrested. As previously reported, cyclin E is essential for megakaryocyte polyploidy; however, it has remained unclear whether up-regulated cyclin E is an inducer of polyploidy in vivo. We found that cyclin E is up-regulated upon stimulation of primary megakaryocytes by thrombopoietin. Transgenic mice in which elevated cyclin E expression is targeted to megakaryocytes display an increased ploidy profile. Examination of S phase markers, specifically proliferating cell nuclear antigen, cyclin A, and 5-bromo-2-deoxyuridine reveals that cyclin E promotes progression to S phase and cell cycling. Interestingly, analysis of Cdc6 and Mcm2 indicates that cyclin E mediates its effect by promoting the expression of components of the pre-replication complex. Furthermore, we show that up-regulated cyclin E results in the up-regulation of cyclin B1 levels, suggesting an additional mechanism of cyclin E-mediated ploidy increase. These findings define a key role for cyclin E in promoting megakaryocyte entry into S phase and hence, increase in the number of cell cycling cells and in augmenting polyploidization.


Developmental Dynamics | 2012

ETV2 expression marks blood and endothelium precursors, including hemogenic endothelium, at the onset of blood development

Sarah Wareing; Alexia Eliades; Georges Lacaud; Valerie Kouskoff

Background: ETV2 has been identified as an important player in embryonic hematopoiesis. However, the cell populations in which this transcription factor is expressed and operates during blood specification remain to be fully characterized. Here we address these issues using ES cells and a transgenic mouse line expressing green fluorescent protein (GFP) under the control of ETV2 regulatory elements, allowing us to observe the tight association between ETV2 expression and the initiation of hematopoiesis. Results: Both in differentiating ES cells and gastrulating embryos ETV2::GFP is mostly found co‐expressed with endothelial markers and defines a subset of cells with greatly enriched primitive erythroid potential. Upon culture ETV2::GFP cells rapidly up‐regulate CD41, down‐regulate endothelium cell surface markers and generate definitive hematopoietic progenitors. Altogether these characteristics represent the hallmark of hemogenic endothelium cells, a specialized endothelium originating from the hemangioblast and giving rise to hematopoietic cells. Importantly, ETV2 deficiency results in a complete absence of hemogenic endothelium in differentiating ES cells and gastrulating embryos. Conclusions: Altogether our data reveal that ETV2 marks hemogenic endothelium in gastrulating embryos and is absolutely required for the formation of this precursor at the onset of hematopoiesis. These results enhance our understanding of embryonic hematopoiesis and the factors driving hemogenic endothelium specification. Developmental Dynamics 241:1454–1464, 2012.


Journal of Cellular Physiology | 2012

Oxidases and reactive oxygen species during hematopoiesis: a focus on megakaryocytes

Alexia Eliades; Shinobu Matsuura; Katya Ravid

Reactive oxygen species (ROS), generated as a result of various reactions, control an array of cellular processes. The role of ROS during megakaryocyte (MK) development has been a subject of interest and research. The bone marrow niche is a site of MK differentiation and maturation. In this environment, a gradient of oxygen tension, from normoxia to hypoxia results in different levels of ROS, impacting cellular physiology. This article provides an overview of major sources of ROS, their implication in different signaling pathways, and their effect on cellular physiology, with a focus on megakaryopoiesis. The importance of ROS‐generating oxidases in MK biology and pathology, including myelofibrosis, is also described. J. Cell. Physiol. 227: 3355–3362, 2012.


Cell Reports | 2016

The Hemogenic Competence of Endothelial Progenitors Is Restricted by Runx1 Silencing during Embryonic Development.

Alexia Eliades; Sarah Wareing; Elli Marinopoulou; Muhammad Z.H. Fadlullah; Rahima Patel; Joanna B. Grabarek; Berenika Plusa; Georges Lacaud; Valerie Kouskoff

Summary It is now well-established that hematopoietic stem cells (HSCs) and progenitor cells originate from a specialized subset of endothelium, termed hemogenic endothelium (HE), via an endothelial-to-hematopoietic transition. However, the molecular mechanisms determining which endothelial progenitors possess this hemogenic potential are currently unknown. Here, we investigated the changes in hemogenic potential in endothelial progenitors at the early stages of embryonic development. Using an ETV2::GFP reporter mouse to isolate emerging endothelial progenitors, we observed a dramatic decrease in hemogenic potential between embryonic day (E)7.5 and E8.5. At the molecular level, Runx1 is expressed at much lower levels in E8.5 intra-embryonic progenitors, while Bmi1 expression is increased. Remarkably, the ectopic expression of Runx1 in these progenitors fully restores their hemogenic potential, as does the suppression of BMI1 function. Altogether, our data demonstrate that hemogenic competency in recently specified endothelial progenitors is restrained through the active silencing of Runx1 expression.


Blood | 2016

Lysyl oxidase is associated with increased thrombosis and platelet reactivity.

Shinobu Matsuura; Rongjuan Mi; Milka Koupenova; Alexia Eliades; Shenia Patterson; Paul Toselli; Jonathan N. Thon; Joseph E. Italiano; Philip C. Trackman; Nikolaos Papadantonakis; Katya Ravid

Lysyl oxidase (LOX) is overexpressed in various pathologies associated with thrombosis, such as arterial stenosis and myeloproliferative neoplasms (MPNs). LOX is elevated in the megakaryocytic lineage of mouse models of MPNs and in patients with MPNs. To gain insight into the role of LOX in thrombosis and platelet function without compounding the influences of other pathologies, transgenic mice expressing LOX in wild-type megakaryocytes and platelets (Pf4-Lox(tg/tg)) were generated. Pf4-Lox(tg/tg) mice had a normal number of platelets; however, time to vessel occlusion after endothelial injury was significantly shorter in Pf4-Lox(tg/tg) mice, indicating a higher propensity for thrombus formation in vivo. Exploring underlying mechanisms, we found that Pf4-Lox(tg/tg) platelets adhere better to collagen and have greater aggregation response to lower doses of collagen compared with controls. Platelet activation in response to the ligand for collagen receptor glycoprotein VI (cross-linked collagen-related peptide) was unaffected. However, the higher affinity of Pf4-Lox(tg/tg) platelets to the collagen sequence GFOGER implies that the collagen receptor integrin α2β1 is affected by LOX. Taken together, our findings demonstrate that LOX enhances platelet activation and thrombosis.


Development | 2015

FOXF1 inhibits hematopoietic lineage commitment during early mesoderm specification.

Maud Fleury; Alexia Eliades; Peter Carlsson; Georges Lacaud; Valerie Kouskoff

The molecular mechanisms orchestrating early mesoderm specification are still poorly understood. In particular, how alternate cell fate decisions are regulated in nascent mesoderm remains mostly unknown. In the present study, we investigated both in vitro in differentiating embryonic stem cells, and in vivo in gastrulating embryos, the lineage specification of early mesodermal precursors expressing or not the Forkhead transcription factor FOXF1. Our data revealed that FOXF1-expressing mesoderm is derived from FLK1+ progenitors and that in vitro this transcription factor is expressed in smooth muscle and transiently in endothelial lineages, but not in hematopoietic cells. In gastrulating embryos, FOXF1 marks most extra-embryonic mesoderm derivatives including the chorion, the allantois, the amnion and a subset of endothelial cells. Similarly to the in vitro situation, FOXF1 expression is excluded from the blood islands and blood cells. Further analysis revealed an inverse correlation between hematopoietic potential and FOXF1 expression in vivo with increased commitment toward primitive erythropoiesis in Foxf1-deficient embryos, whereas FOXF1-enforced expression in vitro was shown to repress hematopoiesis. Altogether, our data establish that during gastrulation, FOXF1 marks all posterior primitive streak extra-embryonic mesoderm derivatives with the remarkable exception of the blood lineage. Our study further suggests that this transcription factor is implicated in actively restraining the specification of mesodermal progenitors to hematopoiesis. Highlighted article: In mouse embryos, FOXF1 marks all extra-embryonic mesoderm derivatives except for the blood lineage and actively restrains the specification of mesodermal progenitors to hematopoiesis.


Cell Cycle | 2013

Megakaryocyte polyploidy is inhibited by lysyl oxidase propeptide

Alexia Eliades; Nikolaos Papadantonakis; Shinobu Matsuura; Rongjuan Mi; Manish V. Bais; Philip C. Trackman; Katya Ravid

Megakaryocytes (MKs), the platelet precursors, undergo an endomitotic cell cycle that leads to polyploidy. Lysyl oxidase propeptide (LOX-PP) is generated from lysyl oxidase (LOX) pro-enzyme after proteolytical cleavage. We recently reported that LOX, a known matrix cross-linking enzyme, contributes to MK lineage expansion. In addition, LOX expression levels are ploidy-dependent, with polyploidy MKs having minimal levels. This led us to test the effects of LOX-PP on the number and ploidy of primary MKs. LOX-PP significantly decreases mouse bone marrow MK ploidy coupled with a reduction in MK size. MK number is unchanged upon LOX-PP treatment. Analysis of LOX-PP- or vehicle-treated MKs by western blotting revealed a reduction in ERK1/2 phosphorylation and in the levels of its downstream targets, cyclin D3 and cyclin E, which are known to play a central role in MK endomitosis. Pull-down assays and immunochemistry staining indicated that LOX-PP interacts with α-tubulin and the mictotubules, which can contribute to decreased MK ploidy. Thus, our findings defined a role for LOX-PP in reducing MK ploidy. This suggests that high-level expression of LOX in aberrantly proliferating MKs could play a part in inhibiting their polyploidization via LOX-PP.

Collaboration


Dive into the Alexia Eliades's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georges Lacaud

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rahima Patel

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge