Alexios J. Aletras
University of Patras
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexios J. Aletras.
Cytokine | 2003
Eleni Papakonstantinou; Alexios J. Aletras; Michael Roth; Michael Tamm; George Karakiulakis
Chronic hypoxia is implicated in lung fibrosis, which is characterized by enhanced deposition of extracellular matrix (ECM) molecules. Transforming growth factor-beta (TGF-beta) plays a key role in fibroblast homeostasis and is involved in disease states characterized by excessive fibrosis, such as pulmonary fibrosis. In this study, we investigated if hypoxia modulates the effects of TGF-beta on the expression of gelatinases: matrix metalloproteinase (MMP)-2 and MMP-9, interstitial collagenases: MMP-1 and MMP-13, tissue inhibitors of MMP (TIMP), collagen type I and interleukin-6 (IL-6). Primary human lung fibroblasts, established from tissue biopsies, were cultivated under normoxia or hypoxia in the presence of TGF-beta1, TGF-beta2 or TGF-beta3. Gelatinases were assessed by gelatin zymography and collagenases, TIMP, collagen type I and IL-6 by ELISA. Under normoxia fibroblasts secreted MMP-2, collagenases, TIMP, collagen type I and IL-6. TGF-betas significantly decreased MMP-1 and increased TIMP-1, IL-6 and collagen type I. Hypoxia significantly enhanced MMP-2, and collagenases. Compared to normoxia, the combination of TGF-beta and hypoxia reduced MMP-1, and further amplified the level of TIMP, IL-6, and collagen type I. Thus, in human lung fibroblasts hypoxia significantly increases the TGF-betas-induced secretion of collagen type I and may be associated to the accumulation of ECM observed in lung fibrosis.
Journal of Biological Chemistry | 2007
George Karakiulakis; Eleni Papakonstantinou; Alexios J. Aletras; Michael Tamm; Michael Roth
Hypoxia is associated with extracellular matrix remodeling in several inflammatory lung diseases, such as fibrosis, chronic obstructive pulmonary disease, and asthma. In a human cell culture model, we assessed whether extracellular matrix modification by hypoxia and platelet-derived growth factor (PDGF) involves the action of matrix metalloproteinases (MMPs) and thereby affects cell proliferation. Expression of MMP and its activity were assessed by zymography and enzyme-linked immunosorbent assay in human lung fibroblasts and pulmonary vascular smooth muscle cells (VSMCs), and synthesis of soluble collagen type I was assessed by enzyme-linked immunosorbent assay. In both cell types, hypoxia up-regulated the expression of MMP-1, -2, and -9 precursors without subsequent activation. MMP-13 was increased by hypoxia only in fibroblasts. PDGF-BB inhibited the synthesis and secretion of all hypoxia-dependent MMP via Erk1/2 mitogen-activated protein (MAP) kinase activation. Hypoxia and PDGF-BB induced synthesis of soluble collagen type I via Erk1/2 and p38 MAP kinase. Hypoxia-induced cell proliferation was blocked by antibodies to PDGF-BB or by inhibition of Erk1/2 but not by the inhibition of MMP or p38 MAP kinase in fibroblasts. In VSMCs, hypoxia-induced proliferation involved Erk1/2 and p38 MAP kinases and was further increased by fibroblast-conditioned medium or soluble collagen type I via Erk1/2. In conclusion, hypoxia controls tissue remodeling and proliferation in a cell type-specific manner. Furthermore, fibroblasts may affect proliferation of VSMC indirectly by inducing the synthesis of soluble collagen type I.
FEBS Journal | 2014
Achilleas D. Theocharis; Chrisostomi Gialeli; Panagiotis Bouris; Efstathia Giannopoulou; Spyros S. Skandalis; Alexios J. Aletras; Renato V. Iozzo; Nikos K. Karamanos
Proteoglycans are major constituents of extracellular matrices, as well as cell surfaces and basement membranes. They play key roles in supporting the dynamic extracellular matrix by generating complex structural networks with other macromolecules and by regulating cellular phenotypes and signaling. It is becoming evident, however, that proteolytic enzymes are required partners for matrix remodeling and for modulating cell signaling via matrix constituents. Proteinases contribute to all stages of diseases, particularly cancer development and progression, and contextually participate in either the removal of damaged products or in the processing of matrix molecules and signaling receptors. The dynamic interplay between proteoglycans and proteolytic enzymes is a crucial biological step that contributes to the pathophysiology of cancer and inflammation. Moreover, proteoglycans are implicated in the expression and secretion of proteolytic enzymes and often modulate their activities. In this review, we describe the emerging biological roles of proteoglycans and proteinases, with a special emphasis on their complex interplay. We critically evaluate this important proteoglycan–proteinase interactome and discuss future challenges with respect to targeting this axis in the treatment of cancer.
Matrix Biology | 2015
Panagiotis Bouris; Spyros S. Skandalis; Zoi Piperigkou; Nikos Afratis; Konstantina Karamanou; Alexios J. Aletras; Aristidis Moustakas; Achilleas D. Theocharis; Nikos K. Karamanos
The 17β-estradiol (E2)/estrogen receptor alpha (ERα) signaling pathway is one of the most important pathways in hormone-dependent breast cancer. E2 plays pivotal roles in cancer cell growth, survival, and architecture as well as in gene expression regulatory mechanisms. In this study, we established stably transfected MCF-7 cells by knocking down the ERα gene (designated as MCF-7/SP10+ cells), using specific shRNA lentiviral particles, and compared them with the control cells (MCF-7/c). Interestingly, ERα silencing in MCF-7 cells strongly induced cellular phenotypic changes accompanied by significant changes in gene and protein expression of several markers typical of epithelial to mesenchymal transition (EMT). Notably, these cells exhibited enhanced cell proliferation, migration and invasion. Moreover, ERα suppression strongly affected the gene and protein expression of EGFR and HER2 receptor tyrosine kinases, and various extracellular matrix (ECM) effectors, including matrix metalloproteinases and their endogenous inhibitors (MMPs/TIMPs) and components of the plasminogen activation system. The action caused by E2 in MCF-7/c cells in the expression of HER2, MT1-MMP, MMP1, MMP9, uPA, tPA, and PAI-1 was abolished in MCF-7/SP10+ cells lacking ERα. These data suggested a regulatory role for the E2/ERα pathway in respect to the composition and activity of the extracellular proteolytic molecular network. Notably, loss of ERα promoted breast cancer cell migration and invasion by inducing changes in the expression levels of certain matrix macromolecules (especially uPA, tPA, PAI-1) through the EGFR-ERK signaling pathway. In conclusion, loss of ERα in breast cancer cells results in a potent EMT characterized by striking changes in the expression profile of specific matrix macromolecules highlighting the potential nodal role of matrix effectors in breast cancer endocrine resistance.
FEBS Journal | 2013
Antonis Skliris; Vassiliki T. Labropoulou; Dionysios J. Papachristou; Alexios J. Aletras; Nikos K. Karamanos; Achilleas D. Theocharis
Serglycin (SG) is mainly expressed by hematopoetic cells as an intracellular proteoglycan. Multiple myeloma cells constitutively secrete SG, which is also localized on the cell surface in some cell lines. In this study, SG isolated from myeloma cells was found to interact with collagen type I (Col I), which is a major bone matrix component. Notably, myeloma cells positive for cell‐surface SG (csSG) adhered significantly to Col I, compared to cells lacking csSG. Removal of csSG by treatment of the cells with chondroitinase ABC or blocking of csSG by an SG‐specific polyclonal antibody significantly reduced the adhesion of myeloma cells to Col I. Significant up‐regulation of expression of the matrix metalloproteinases MMP–2 and MMP–9 at both the mRNA and protein levels was observed when culturing csSG‐positive myeloma cells on Col I‐coated dishes or in the presence of soluble Col I. MMP–9 and MMP–2 were also expressed in increased amounts by myeloma cells in the bone marrow of patients with multiple myeloma. Our data indicate that csSG of myeloma cells affects key functional properties, such as adhesion to Col I and the expression of MMPs, and imply that csSG may serve as a potential prognostic factor and/or target for pharmacological interventions in multiple myeloma.
Journal of Biological Inorganic Chemistry | 2009
Maria Pavlaki; Katerina Debeli; Irene-Eva Triantaphyllidou; Nikolaos Klouras; Eleftheria Giannopoulou; Alexios J. Aletras
Titanocene dichloride, the most studied metallocene, exhibits antiproliferative activity in a wide spectrum of murine and human tumours. In this article it is demonstrated that titanocene dichloride inhibits tumour gelatinases in a dose-dependent manner. Substrate saturation experiments and the fact that the IC50 values were increased in correlation with collagen substrate concentrations indicate that the titanocene dichloride induced inhibition is of a competitive type. Titanocene dichloride also specifically inhibits clostridium collagenase and trypsin, particularly when collagens are used as substrates. Binding experiments demonstrate that cyclopentadiene–Ti(IV) moieties, resulting from titanocene dichloride at physiological pH, are bound mainly to different types of collagens and to a lesser extent to casein or bovine serum albumin, forming soluble and stable adducts. These results indicate that titanocene dichloride behaves as a competitive inhibitor against various proteolytic enzymes by binding to the substrate rather than to the enzyme active site. This property may be responsible for the antiangiogenic effect of titanocene dichloride and additionally contributes to its anticancer action.
BioMed Research International | 2013
Spyros A. Syggelos; Alexios J. Aletras; Ioanna Smirlaki; Spyros S. Skandalis
The leading complication of total joint replacement is periprosthetic osteolysis, which often results in aseptic loosening of the implant, leading to revision surgery. Extracellular matrix degradation and connective tissue remodeling around implants have been considered as major biological events in the periprosthetic loosening. Critical mediators of wear particle-induced inflammatory osteolysis released by periprosthetic synovial cells (mainly macrophages) are inflammatory cytokines, chemokines, and proteolytic enzymes, mainly matrix metalloproteinases (MMPs). Numerous studies reveal a strong interdependence of MMP expression and activity with the molecular mechanisms that control the composition and turnover of periprosthetic matrices. MMPs can either actively modulate or be modulated by the molecular mechanisms that determine the debris-induced remodeling of the periprosthetic microenvironment. In the present study, the molecular mechanisms that control the composition, turnover, and activity of matrix macromolecules within the periprosthetic microenvironment exposed to wear debris are summarized and presented. Special emphasis is given to MMPs and their endogenous tissue inhibitors (TIMPs), as well as to the proteasome pathway, which appears to be an elegant molecular regulator of specific matrix macromolecules (including specific MMPs and TIMPs). Furthermore, strong rationale for potential clinical applications of the described molecular mechanisms to the treatment of periprosthetic loosening and osteolysis is provided.
Current Molecular Medicine | 2012
Spyros S. Skandalis; Alexios J. Aletras; C. Gialeli; Achilleas D. Theocharis; Nikos Afratis; G. N. Tzanakakis; Nikos K. Karamanos
Extracellular matrices (ECMs) are dynamic structures that provide cells not only with a structural support but, importantly, exhibit significant functional roles in the control of key cellular events such as adhesion, migration, proliferation, differentiation, and survival. In tumors, matrix effectors such as proteoglycans (PGs) and matrix metalloproteinases (MMPs) constitute major regulators of the interactions between tumor cells and their microenvironment and, therefore, they have been identified as potential molecular targets that are expected to advance the pharmacological treatment of cancer. ECMs composition is highly affected by cells through intrinsic regulatory mechanisms, such as the ubiquitin-proteasome system (UPS). Proteasome is a major cellular protease complex that controls the concentration and turnover of molecules in ECMs, including certain types of PGs, MMPs and collagens, and consequently, in the tumor microenvironment. Furthermore, proteasome activity is regulated by PG-derived intracellular glycosaminoglycan moieties revealing a critical inter-dependence of these compounds. Since ECMs renewal and degradation can be tightly regulated by proteasome activities, its modulation may be considered as a novel strategy to control the properties of tumor microenvironment. Currently, there are several proteasome inhibitors targeting distinct molecular pathways either approved or in clinical trials for the treatment of multiple cancers. In this review, the novel approach of targeting the proteasome to selectively regulate the synthesis and the bioactivity of certain matrix PGs and MMPs is presented and discussed.
Biochimica et Biophysica Acta | 2014
Maria-Ioanna Ellina; Panagiotis Bouris; Alexios J. Aletras; Achilleas D. Theocharis; Dimitris Kletsas; Nikos K. Karamanos
BACKGROUND ErbB receptors, EGFR and HER2, have been implicated in the development and progression of colon cancer. Several intracellular pathways are mediated upon activation of EGFR and/or HER2 by EGF. However, there are limited data regarding the EGF-mediated signaling affecting functional cell properties and the expression of extracellular matrix macromolecules implicated in cancer progression. METHODS Functional assays, such as cell proliferation, transwell invasion assay and migration were performed to evaluate the impact of EGFR/HER2 in constitutive and EGF-treated Caco-2 cells. Signaling pathways were evaluated using specific intracellular inhibitors. Western blot was also utilized to examine the phosphorylation levels of ERK1/2. Real time PCR was performed to evaluate gene expression of matrix macromolecules. RESULTS EGF increases cell proliferation, invasion and migration and importantly, EGF mediates overexpression of EGFR and downregulation of HER2. The EGF-EGFR axis is the main pathway affecting colon cancers invasive potential, proliferative and migratory ability. Intracellular pathways (PI3K-Akt, MEK1/2-Erk and JAK-STAT) are all implicated in the migratory profile. Notably, MT1- and MT2-MMP as well as TIMP-2 are downregulated, whereas uPA is upregulated via an EGF-EGFR network. The EGF-EGFR axis is also implicated in the expression of syndecan-4 and TIMP-1. However, glypican-1 upregulation by EGF is mainly mediated via HER2. CONCLUSIONS AND GENERAL SIGNIFICANCE The obtained data highlight the crucial importance of EGF on the expression of both receptors and on the EGF-EGFR/HER2 signaling network, reveal the distinct roles of EGFR and HER2 on expression of matrix macromolecules and open a new area in designing novel agents in targeting colon cancer. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
FEBS Journal | 2013
Anna Niarakis; Eleftheria Giannopoulou; Panagiota Ravazoula; Elias Panagiotopoulos; Ioannis K. Zarkadis; Alexios J. Aletras
Membrane type 1 matrix metalloproteinase (MT1‐MMP) is implicated in pericellular proteolysis, and, together with tissue inhibitor of matrix metalloproteinases‐2 (TIMP‐2), in the activation of pro‐matrix metalloproteinase‐2 on the cell surface. It is expressed on the cell surface either activated or as a proenzyme. A soluble form of MT1‐MMP (sMT1‐MMP) has been previously identified in periprosthetic tissues and fluid of patients with loose arthroplasty endoprostheses. The aim of this study was to examine periprosthetic tissues and fluids from patients with loose arthroplasty endoprostheses, as well as tissues and fluids from patients with other disorders, for the presence of sMT1‐MMP, and to investigate its activation state and possible role. With antibody against MT1‐MMP, a protein with molecular mass of ~ 57 kDa was detected by western blotting in all samples tested, representing a soluble form of MT1‐MMP, which cannot be ascribed to alternative splicing, as northern blotting showed only one transcript. With various biochemical methods, it was shown that this species occurs in a latent form bearing the N‐terminal prodomain, and, additionally, it is bound to TIMP‐2, which appeared to be bound via its C‐terminal domain to a site different from the active site. Cell ELISA and immunohistochemical analysis revealed that, besides fibroblasts, all other cells, such as inflammatory, epithelial, endothelial, giant and cancer cells, express MT1‐MMP on their plasma membrane as a proenzyme. Taking into account the proteolytic abilities of MT1‐MMP, the latent sMT1‐MMP–TIMP‐2 complex could be considered as a new interstitial collagenase. However, the exact role, the production mechanism and the cell origin of this complex remain to be elucidated.