Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexis A. Gonzalez is active.

Publication


Featured researches published by Alexis A. Gonzalez.


Hypertension | 2011

Soluble Form of the (Pro)Renin Receptor Is Augmented in the Collecting Duct and Urine of Chronic Angiotensin II–Dependent Hypertensive Rats

Alexis A. Gonzalez; Lucienne S. Lara; Christina Luffman; Dale M. Seth; Minolfa C. Prieto

Renin synthesis and secretion by principal cells of the collecting duct are enhanced in angiotensin (Ang) II–dependent hypertension. The presence of renin/(pro)renin and its receptor, the (pro)renin receptor ([P]RR), in the collecting duct may provide a pathway for Ang I generation with further conversion to Ang II. To assess whether (P)RR activation occurs during Ang II–dependent hypertension, we examined renal (P)RR levels and soluble (P)RR excretion in the urine of chronic Ang II–infused rats (80 ng/min; for 2 weeks; n=10) and sham-operated rats (n=10). Systolic blood pressure and Ang II levels in the plasma and kidney were increased whereas plasma renin activity was suppressed in Ang II–infused rats. Renal (P)RR transcripts were upregulated in the cortex and medulla of Ang II–infused rats. (P)RR immunoreactivity in collecting duct cells and the protein levels of the full-length form (37-kDa band) were significantly decreased in the medulla of Ang II–infused rats. The soluble (P)RR (28-kDa band) was detected in the renal medulla and urine samples of Ang II–infused rats, which also showed increases in urinary renin content. To determine whether the soluble (P)RR could stimulate Ang I formation, urine samples were incubated with recombinant human (pro)renin. Urine samples of Ang II–infused rats exhibited increased Ang I formation compared with sham-operated rats. Thus, in chronic Ang II–infused rats, the catalytic activity of the augmented renin produced in the collecting duct may be enhanced by the intraluminal soluble (P)RR and cell-surface located (P)RR, thus contributing to enhanced intratubular Ang II formation.


Hypertension | 2011

Angiotensin II Stimulates Renin in Inner Medullary Collecting Duct Cells via Protein Kinase C and Independent of Epithelial Sodium Channel and Mineralocorticoid Receptor Activity

Alexis A. Gonzalez; Liu Liu; Lucienne S. Lara; Dale M. Seth; L. Gabriel Navar; Minolfa C. Prieto

Collecting duct (CD) renin is stimulated by angiotensin (Ang) II, providing a pathway for Ang I generation and further conversion to Ang II. Ang II stimulates the epithelial sodium channel via the Ang II type 1 receptor and increases mineralocorticoid receptor activity attributed to increased aldosterone release. Our objective was to determine whether CD renin augmentation is mediated directly by Ang II type 1 receptor or via the epithelial sodium channel and mineralocorticoid receptor. In vivo studies examined the effects of epithelial sodium channel blockade (amiloride; 5 mg/kg per day) on CD renin expression and urinary renin content in Ang II–infused rats (80 ng/min, 2 weeks). Ang II infusion increased systolic blood pressure, medullary renin mRNA, urinary renin content, and intrarenal Ang II levels. Amiloride cotreatment did not alter these responses despite a reduction in the rate of progression of systolic blood pressure. In primary cultures of inner medullary CD cells, renin mRNA and (pro)renin protein levels increased with Ang II (100 nmol/L), and candesartan (Ang II type 1 receptor antagonist) prevented this effect. Aldosterone (10−10 to 10−7 mol/L) with or without amiloride did not modify the upregulation of renin mRNA in Ang II–treated cells. However, inhibition of protein kinase C with calphostin C prevented the Ang II–mediated increases in renin mRNA and (pro)renin protein levels. Furthermore, protein kinase C activation with phorbol 12-myristate 13-acetate increased renin expression to the same extent as Ang II. These data indicate that an Ang II type 1 receptor–mediated increase in CD renin is induced directly by Ang II via the protein kinase C pathway and that this regulation is independent of mineralocorticoid receptor activation or epithelial sodium channel activity.


American Journal of Physiology-renal Physiology | 2011

Increased renin excretion is associated with augmented urinary angiotensin II levels in chronic angiotensin II-infused hypertensive rats

Liu Liu; Alexis A. Gonzalez; Michael McCormack; Dale M. Seth; Hiroyuki Kobori; L. Gabriel Navar; Minolfa C. Prieto

Renin expression in principal cells of collecting ducts (CD) is upregulated in angiotensin II (ANG II)-dependent hypertensive rats; however, it remains unclear whether increased CD-derived renin undergoes tubular secretion. Accordingly, urinary levels of renin (uRen), angiotensinogen (uAGT), and ANG II (uANG II) were measured in chronic ANG II-infused Sprague-Dawley rats (80 ng/min for 14 days, n = 10) and sham-operated rats (n = 10). Systolic blood pressure increased in the ANG II rats by day 5 and continued to increase throughout the study (day 13; ANG II: 175 ± 10 vs. sham: 116 ± 2 mmHg; P < 0.05). ANG II infusion increased renal cortical and medullary ANG II levels (cortical ANG II: 606 ± 72 vs. 247 ± 43 fmol/g; P < 0.05; medullary ANG II: 2,066 ± 116 vs. 646 ± 36 fmol/g; P < 0.05). Although plasma renin activity (PRA) was suppressed in the ANG II-infused rats (0.3 ± 0.2 vs. 5.5 ± 1.8 ng ANG I·ml(-1)·h(-1); P < 0.05), renin content in renal medulla was increased (12,605 ± 1,343 vs. 7,956 ± 765 ng ANG I·h(-1)·mg(-1); P < 0.05). Excretion of uAGT and uANG II increased in the ANG II rats [uAGT: 1,107 ± 106 vs. 60 ± 26 ng/day; P < 0.0001; uANG II: 3,813 ± 431 vs. 2,080 ± 361 fmol/day; P < 0.05]. By day 13, despite suppression of PRA, urinary prorenin content increased in ANG II rats [15.7 ± 3 vs. 2.6 ± 1 × 10(-3) enzyme units excreted (EUE)/day, P < 0.01] as was the excretion rate of renin (8.6 ± 2 × 10(-6) EUE/day) compared with sham (2.8 ± 1 × 10(-6) EUE/day; P < 0.05). Urinary renin and prorenin protein levels examined by Western blot were augmented ∼10-fold in the ANG II-infused rats. Concomitant AT(1) receptor blockade with candesartan prevented the increase. Thus, in ANG II-dependent hypertensive rats with marked PRA suppression, increased urinary levels of renin and prorenin reflect their augmented secretion by CD cells into the luminal fluid. The greater availability of renin and AGT in the urine reflects the capability for intratubular ANG II formation which stimulates sodium reabsorption in distal nephron segments.


Hypertension | 2013

Angiotensin II–Independent Upregulation of Cyclooxygenase-2 by Activation of the (Pro)Renin Receptor in Rat Renal Inner Medullary Cells

Alexis A. Gonzalez; Christina Luffman; Camille Bourgeois; Carlos P. Vio; Minolfa C. Prieto

During renin–angiotensin system activation, cyclooxygenase-2 (COX-2)-derived prostaglandins attenuate the pressor and antinatriuretic effects of angiotensin II (AngII) in the renal medulla. The (pro)renin receptor (PRR) is abundantly expressed in the collecting ducts (CD) and its expression is augmented by AngII. PRR overexpression upregulates COX-2 via mitogen-activated kinases/extracellular regulated kinases 1/2 in renal tissues; however, it is not clear whether this effect occurs independently or in concert with AngII type 1 receptor (AT1R) activation. We hypothesized that PRR activation stimulates COX-2 expression independently of AT1R in primary cultures of rat renal inner medullary cells. The use of different cell-specific immunomarkers (aquaporin-2 for principal cells, anion exchanger type 1 for intercalated type-A cells, and tenascin C for interstitial cells) and costaining for AT1R, COX-2, and PRR revealed that PRR and COX-2 were colocalized in intercalated and interstitial cells whereas principal cells did not express PRR or COX-2. In normal rat kidney sections, PRR and COX-2 were colocalized in intercalated and interstitial cells. In rat renal inner medullary cultured cells, treatment with AngII (100 nmol/L) increased COX-2 expression via AT1R. In addition, AngII and rat recombinant prorenin (100 nmol/L) treatments increased extracellular regulated kinases 1/2 phosphorylation, independently. Importantly, rat recombinant prorenin upregulated COX-2 expression in the presence of AT1R blockade. Inhibition of mitogen-activated kinases/extracellular regulated kinases 1/2 suppressed COX-2 upregulation mediated by either AngII or rat recombinant prorenin. Furthermore, PRR knockdown using PRR-short hairpin RNA blunted the rat recombinant prorenin-mediated upregulation of COX-2. These results indicate that COX-2 expression is upregulated by activation of either PRR or AT1R via mitogen-activated kinases/extracellular regulated kinases 1/2 in rat renal inner medullary cells.


Current Opinion in Nephrology and Hypertension | 2012

The complex interplay between cyclooxygenase-2 and angiotensin II in regulating kidney function.

Torrance Green; Alexis A. Gonzalez; Kenneth D. Mitchell; L. Gabriel Navar

Purpose of reviewCyclooxygenase-2 (COX-2) plays a critical role in modulating deleterious actions of angiotensin II (Ang II) where there is an inappropriate activation of the renin–angiotensin system (RAS). This review discusses the recent developments regarding the complex interactions by which COX-2 modulates the impact of an activated RAS on kidney function and blood pressure. Recent findingsNormal rats with increased COX-2 activity but with different intrarenal Ang II activity because of sodium restriction or chronic treatment with angiotensin-converting enzyme (ACE) inhibitors showed similar renal hemodynamic responses to COX-2-selective inhibition (nimesulide) indicating independence from the intrarenal Ang II activity. COX-2-dependent maintenance of medullary blood flow was consistent and not dependent on dietary salt or ACE inhibition. In contrast, COX-2 influences on sodium excretion were contingent on the prevailing RAS activity. In chronic hypertensive models, COX-2 inhibition elicited similar reductions in kidney function, but COX-2 metabolites contribute to rather than ameliorate the hypertension. SummaryThe maintenance of renal hemodynamics reflects direct and opposing effects of Ang II and COX-2 metabolites. The antagonism in water and electrolyte reabsorption is dependent on the prevailing intrarenal Ang II activity. The recent functional experiments demonstrate a beneficial modulation of Ang II by COX-2 except in the presence of inflammation promoted by hypertension, hyperglycemia, and oxidative stress.


Pflügers Archiv: European Journal of Physiology | 2013

Evolving concepts on regulation and function of renin in distal nephron.

Minolfa C. Prieto; Alexis A. Gonzalez; L. Gabriel Navar

Sustained stimulation of the intrarenal/intratubular renin–angiotensin system in a setting of elevated arterial pressure elicits renal vasoconstriction, increased sodium reabsorption, proliferation, fibrosis, and eventual renal injury. Activation of luminal AT1 receptors in proximal and distal nephron segments by local Ang II formation stimulates various transport systems. Augmented angiotensinogen (AGT) production by proximal tubule cells increases AGT secretion contributing to increased proximal Ang II levels and leading to spillover of AGT into the distal nephron segments, as reflected by increased urinary AGT excretion. The increased distal delivery of AGT provides substrate for renin, which is expressed in principal cells of the collecting tubule and collecting ducts, and is also stimulated by AT1 receptor activation. Renin and prorenin are secreted into the tubular lumen and act on the AGT delivered from the proximal tubule to form more Ang I. The catalytic actions of renin and or prorenin may be enhanced by binding to prorenin receptors on the intercalated cells or soluble prorenin receptor secreted into the tubular fluid. There is also increased luminal angiotensin converting enzyme in collecting ducts facilitating Ang II formation leading to stimulation of sodium reabsorption via sodium channel and sodium/chloride co-transporter. Thus, increased collecting duct renin contributes to Ang II-dependent hypertension by augmenting distal nephron intratubular Ang II formation leading to sustained stimulation of sodium reabsorption and progression of hypertension.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

Inhibition of bFGF-receptor type 2 increases kidney damage and suppresses nephrogenic protein expression after ischemic acute renal failure.

Sandra Villanueva; Carlos Cespedes; Alexis A. Gonzalez; Eric Roessler; Carlos P. Vio

Recovery from acute renal failure (ARF) requires the replacement of injured cells by new cells that are able to restore tubule epithelial integrity. We have recently described the expression of nephrogenic proteins [Vimentin, neural cell adhesion molecule, basic fibroblast growth factor (bFGF), Pax-2, bone morphogen protein-7, Noggin, Smad 1-5-8, p-Smad, hypoxia-inducible factor-1alpha, vascular endothelial growth factor], in a time frame similar to that observed in kidney development, after ischemic ARF induced in an ischemia-reperfusion (I/R) model. Furthermore, we show that bFGF, a morphogen involved in mesenchyme/epithelial transition in kidney development, induces a reexpression of morphogenic proteins in an earlier time frame and accelerates the recovery process after renal damage. Herein, we confirm that renal morphogenes are modulated by bFGF and hypothesized that a decrease in bFGF receptor 2 (bFGFR2) levels by the use of antisense oligonucleotides diminishes the expression of morphogenes. Male Sprague-Dawley rats submitted to ischemic injury were injected with 112 microg/kg bFGFR2 antisense oligonucleotide (bFGFR2-ASO) followed by reperfusion. Rats were killed, and the expression of nephrogenic proteins and renal marker damage was analyzed by immunohistochemistry and immunoblot. Animals subjected to I/R treated with bFGFR2-ASO showed a significant reduction in morphogen levels (P < 0.05). In addition, we observed an increase in markers of renal damage: macrophages (ED-1) and interstitial alpha-smooth muscle actin. These results confirm that bFGF participates in the recovery process and that treatment with bFGFR2-ASO induces an altered expression of morphogen proteins.


The American Journal of the Medical Sciences | 2014

Basic InvestigationAngiotensin II Increases the Expression of (Pro)Renin Receptor During Low-Salt Conditions

Alexis A. Gonzalez; Joel P. Womack; Liu Liu; Minolfa C. Prieto; Dale M. Seth

Background:Evidence indicates that chronic angiotensin II (AngII) infusion increases (pro)renin receptor ((P)RR) expression in renal inner medullary collecting duct (IMCD) cells. Recently, it has been shown that renal (P)RR expression is augmented during a low-salt (LS) diet. However, the role of AngII in mediating the stimulation of (P)RR during LS conditions is unknown. We hypothesized that AngII mediates the increased expression of (P)RR during low-salt conditions in IMCDs. Methods:(P)RR expression and AngII levels were evaluated in Sprague-Dawley rats fed a LS diet (0.03% NaCl) and normal salt (NS; 0.4% NaCl) for 7 days. We examined the effects of sodium reduction (130 mM NaCl) and AngII on (P)RR expression in IMCDs isolated in hypertonic conditions (640 mOsmol/L with 280 mM NaCl). Results:Plasma renin activity in LS rats was significantly higher than rats fed with NS (28.1 ± 2.2 versus 6.7 ± 1.1 ng AngI·mL−1·hr−1; P < 0.05), as well as renin content in renal cortex and medulla. The (P)RR mRNA and protein levels were higher in medullary tissues from LS rats but did not change in the cortex. Intrarenal AngII was augmented in LS compared with NS rats (cortex: 710 ± 113 versus 277 ± 86 fmol/g, P < 0.05; medulla: 2093 ± 125 versus 1426 ± 126 fmol/g, P < 0.05). In cultured IMCDs, (P)RR expression was increased in response to LS or AngII treatment and potentiated by both treatments (both at 640 mOsmol/L). Conclusions:These data indicate that (P)RR is augmented in medullary collecting ducts in response to LS and that this effect is further enhanced by the increased intrarenal AngII content.


American Journal of Physiology-renal Physiology | 2015

PKC-α-dependent augmentation of cAMP and CREB phosphorylation mediates the angiotensin II stimulation of renin in the collecting duct

Alexis A. Gonzalez; Liu Liu; Lucienne S. Lara; Camille Bourgeois; Cristobal Ibaceta-Gonzalez; Nicolas Salinas-Parra; Venkateswara Gogulamudi; Dale M. Seth; Minolfa C. Prieto

In contrast to the negative feedback of angiotensin II (ANG II) on juxtaglomerular renin, ANG II stimulates renin in the principal cells of the collecting duct (CD) in rats and mice via ANG II type 1 (AT1R) receptor, independently of blood pressure. In vitro data indicate that CD renin is augmented by AT1R activation through protein kinase C (PKC), but the exact mechanisms are unknown. We hypothesize that ANG II stimulates CD renin synthesis through AT1R via PKC and the subsequent activation of cAMP/PKA/CREB pathway. In M-1 cells, ANG II increased cAMP, renin mRNA (3.5-fold), prorenin, and renin proteins, as well as renin activity in culture media (2-fold). These effects were prevented by PKC inhibition with calphostin C, PKC-α dominant negative, and by PKA inhibition. Forskolin-induced increases in cAMP and renin expression were prevented by calphostin C. PKC inhibition and Ca2+ depletion impaired ANG II-mediated CREB phosphorylation and upregulation of renin. Adenylate cyclase 6 (AC) siRNA remarkably attenuated the ANG II-dependent upregulation of renin mRNA. Physiological activation of AC with vasopressin increased renin expression in M-1 cells. The results suggest that the ANG II-dependent upregulation of renin in the CD depends on PKC-α, which allows the augmentation of cAMP production and activation of PKA/CREB pathway via AC6. This study defines the intracellular signaling pathway involved in the ANG II-mediated stimulation of renin in the CD. This is a novel mechanism responsible for the regulation of local renin-angiotensin system in the distal nephron.


American Journal of Physiology-renal Physiology | 2012

The sodium-activated sodium channel is expressed in the rat kidney thick ascending limb and collecting duct cells and is upregulated during high salt intake

Lucienne S. Lara; Ryousuke Satou; Camille Bourgeois; Alexis A. Gonzalez; Andrea Zsombok; Minolfa C. Prieto; L. Gabriel Navar

Increased dietary salt triggers oxidative stress and kidney injury in salt-sensitive hypertension; however, the mechanism for sensing increased extracellular Na(+) concentration ([Na(+)]) remains unclear. A Na(+)-activated Na(+) channel (Na sensor) described in the brain operates as a sensor of extracellular fluid [Na(+)]; nonetheless, its presence in the kidney has not been established. In the present study, we demonstrated the gene expression of the Na sensor by RT-PCR and Western blotting in the Sprague-Dawley rat kidney. Using immunofluorescence, the Na sensor was localized to the luminal side in tubular epithelial cells of collecting ducts colocalizing with aquaporin-2, a marker of principal cells, and in thick ascending limb, colocalizing with the glycoprotein Tamm-Horsfall. To determine the effect of a high-salt diet (HSD) on Na sensor gene expression, we quantified its transcript and protein levels primarily in renal medullas from control rats and rats subjected to 8% NaCl for 7 days (n = 5). HSD increased Na sensor expression levels (mRNA: from 1.2 ± 0.2 to 5.1 ± 1.3 au; protein: from 0.98 ± 0.15 to 1.74 ± 0.28 au P < 0.05) in the kidney medulla, but not in the cortex. These data indicate that rat kidney epithelial cells of the thick ascending limb and principal cells of the collecting duct possess a Na sensor that is upregulated by HSD, suggesting an important role in monitoring changes in tubular fluid [Na(+)].

Collaboration


Dive into the Alexis A. Gonzalez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lucienne S. Lara

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos P. Vio

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Carlos Cespedes

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Sandra Villanueva

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge