Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexis Bosman is active.

Publication


Featured researches published by Alexis Bosman.


PLOS ONE | 2010

A Teratocarcinoma-Like Human Embryonic Stem Cell (hESC) Line and Four hESC Lines Reveal Potentially Oncogenic Genomic Changes

Outi Hovatta; Marisa Jaconi; Virpi Töhönen; Frédérique Béna; Stefania Gimelli; Alexis Bosman; Frida Holm; Stefan Wyder; Evgeny M. Zdobnov; Olivier Irion; Peter W. Andrews; Marco Zucchelli; Juha Kere; Anis Feki

The first Swiss human embryonic stem cell (hESC) line, CH-ES1, has shown features of a malignant cell line. It originated from the only single blastomere that survived cryopreservation of an embryo, and it more closely resembles teratocarcinoma lines than other hESC lines with respect to its abnormal karyotype and its formation of invasive tumors when injected into SCID mice. The aim of this study was to characterize the molecular basis of the oncogenicity of CH-ES1 cells, we looked for abnormal chromosomal copy number (by array Comparative Genomic Hybridization, aCGH) and single nucleotide polymorphisms (SNPs). To see how unique these changes were, we compared these results to data collected from the 2102Ep teratocarcinoma line and four hESC lines (H1, HS293, HS401 and SIVF-02) which displayed normal G-banding result. We identified genomic gains and losses in CH-ES1, including gains in areas containing several oncogenes. These features are similar to those observed in teratocarcinomas, and this explains the high malignancy. The CH-ES1 line was trisomic for chromosomes 1, 9, 12, 17, 19, 20 and X. Also the karyotypically (based on G-banding) normal hESC lines were also found to have several genomic changes that involved genes with known roles in cancer. The largest changes were found in the H1 line at passage number 56, when large 5 Mb duplications in chromosomes 1q32.2 and 22q12.2 were detected, but the losses and gains were seen already at passage 22. These changes found in the other lines highlight the importance of assessing the acquisition of genetic changes by hESCs before their use in regenerative medicine applications. They also point to the possibility that the acquisition of genetic changes by ESCs in culture may be used to explore certain aspects of the mechanisms regulating oncogenesis.


Cloning and Stem Cells | 2008

Karyotypically Normal and Abnormal Human Embryonic Stem Cell Lines Derived from PGD-Analyzed Embryos

Teija T. Peura; Alexis Bosman; Omar Chami; Robert P.S. Jansen; Katka Texlova; Tomas Stojanov

Although a normal karyotype is generally a requirement for stem cell lines, new applications are likely to emerge for stem cells with defined chromosomal aneuploidies. We therefore investigated the use of embryos found to be aneuploid on biopsy followed by preimplantation genetic diagnosis (PGD) with fluorescent in situ hybridization (FISH), and developmentally arrested embryos for stem cell derivation. Eleven stem cell lines were obtained from 41 embryos in 36 cultures, with higher success rate achieved from PGD-analyzed, developmentally advanced embryos (45%) than from clinically unsuitable non-PGD embryos (13%). The resulting stem cell lines were karyotyped, and surprisingly, six of the nine lines from aneuploid embryos as well as both lines from non-PGD embryos were karyotypically normal. Three lines from PGD embryos were aneuploid exhibiting trisomy 5, trisomy 16, and an isochromosome 13, respectively. None of the aneuploid lines presented the same anomally as the original PGD analysis. Our study has three important implications. First, we confirm the ability to produce stem cell lines from PGD-tested embryos as well as developmentally abnormal embryos, offering specialty stem cell lines for research into the clinically important aneuploidies. Second, we observe that stem cell derivation from apparently aneuploid embryos is often thwarted by underlying mosaicism and emerging dominance of the stem cell line by karyotypically normal cells. The corollary, however, is that regular production of normal stem cell lines from developmentally abnormal embryos ordinarity discarded opens a new source of embryos for stem cells, whether for research or for eventual therapeutic use within the donating families.


Biomaterials | 2013

Human stem cell-based three-dimensional microtissues for advanced cardiac cell therapies

Maximilian Y. Emmert; Petra Wolint; Nadine Wickboldt; Gino Gemayel; Benedikt Weber; Chad Brokopp; Alessandro Boni; Volkmar Falk; Alexis Bosman; Marisa Jaconi; Simon P. Hoerstrup

Cardiac stem cell therapy has been proposed as a therapy option to treat the diseased myocardium. However, the low retention rate of transplanted single-cell suspensions remains a major issue of current therapy strategies. Therefore, the concept of scaffold-free cellular self-assembly into three-dimensional microtissues (3D-MTs) prior to transplantation may be beneficial to enhance retention and survival. We compared clinically relevant, human stem cell sources for their ability to generate 3D-MTs with particular regards to formation characteristics, proliferation-activity, viability and extracellular-matrix production. Single-cell suspensions of human bone marrow- and adipose tissue-derived mesenchymal stem cells (hBMMSCs and hATMSCs), Isl1(+) cardiac progenitors derived from human embryonic stem cells (hESC-Isl1(+) cells), and undifferentiated human induced pluripotent cells (hiPSCs) were characterized before to generate 3D-MTs using a hanging-drop culture. Besides the principal feasibility of cell-specific 3D-MT formation, a detailed head-to-head comparison between cell sources was performed using histology, immunocyto- and histo-chemistry as well as flow cytometry. Round-oval shaped and uniform 3D-MTs could be successfully generated from all cell types starting with a loose formation within the first 24 h that fully stabilized after 3 days and resulting in a mean 3D-MT diameter of 194.56 ± 18.01 μm (hBMMSCs), 194.56 ± 16.30 μm (hATMSCs), 159.73 ± 19.20 μm (hESC-Isl1(+) cells) and 120.95 ± 7.97 μm (hiPSCs). While all 3D-MTs showed a homogenous cell distribution, hiPSC-derived 3D-MTs displayed a compact cell formation primarily located at the outer margin. hESC-Isl1(+) and hiPSC-derived 3D-MTs maintained their proliferation-activity which was rather limited in the MSC-based 3D-MTs. All four 3D-MT types revealed a comparable viability in excess of 70% and showed a cell-specific expression profile being comparable to their single-cell counterparts. Extracellular matrix (ECM) production during 3D-MT formation was observed for all cell-specific 3D-MTs, with hiPSC-derived 3D-MTs being the fastest one. Interestingly, ECM distribution was homogenous for hATMSC- and hiPSC-based 3D-MTs, while it appeared to be primarily concentrated within in the center of hESC-Isl1(+) and hBMMSC-based 3D-MTs. The results of this head-to-head comparative study indicated that 3D-MTs can be successfully generated from hESC-derived Isl1(+) cells, hiPSCs and MSC lines upon hanging drop culture. Cell-specific 3D-MTs displayed sufficient viability and instant ECM formation. The concept of 3D-MT in vitro generation prior to cell transplantation may represent a promising delivery format for future strategies to enhance cellular engraftment and survival.


Stem Cells and Development | 2013

Molecular and Functional Evidence of HCN4 and Caveolin-3 Interaction During Cardiomyocyte Differentiation from Human Embryonic Stem Cells

Alexis Bosman; Laura Sartiani; Valentina Spinelli; Martina Del Lungo; Francesca Stillitano; Daniele Nosi; Alessandro Mugelli; Elisabetta Cerbai; Marisa Jaconi

Maturation of human embryonic stem cell-derived cardiomyocytes (hESC-CM) is accompanied by changes in ion channel expression, with relevant electrophysiological consequences. In rodent CM, the properties of hyperpolarization-activated cyclic nucleotide-gated channel (HCN)4, a major f-channel isoform, depends on the association with caveolin-3 (Cav3). To date, no information exists on changes in Cav3 expression and its associative relationship with HCN4 upon hESC-CM maturation. We hypothesize that Cav3 expression and its compartmentalization with HCN4 channels during hESC-CM maturation accounts for the progression of f-current properties toward adult phenotypes. To address this, hESC were differentiated into spontaneously beating CM and examined at ∼30, ∼60, and ∼110 days of differentiation. Human adult and fetal CM served as references. HCN4 and Cav3 expression and localization were analyzed by real time PCR and immunocyto/histochemistry. F-current was measured in patch-clamped single cells. HCN4 and Cav3 colocalize in adult human atrial and ventricular CM, but not in fetal CM. Proteins and mRNA for Cav3 were not detected in undifferentiated hESC, but expression increased during hESC-CM maturation. At 110 days, HCN4 appeared to be colocalized with Cav3. Voltage-dependent activation of the f-current was significantly more positive in fetal CM and 60-day hESC-CM (midpoint activation, V1/2, ∼ -82 mV) than in 110-day hESC-CM or adult CM (V1/2∼-100 mV). In the latter cells, caveolae disruption reversed voltage dependence toward a more positive or an immature phenotype, with V1/2 at -75 mV, while in fetal CM voltage dependence was not affected. Our data show, for the first time, a developmental change in HCN4-Cav3 association in hESC-CM. Cav3 expression and its association with ionic channels likely represent a crucial step of cardiac maturation.


Stem Cells | 2015

Perturbations of Heart Development and Function in Cardiomyocytes from Human Embryonic Stem Cells with Trisomy 21

Alexis Bosman; A. Letourneau; Laura Sartiani; Martina Del Lungo; Flavio Ronzoni; Rostyslav Kuziakiv; Virpi Töhönen; Marco Zucchelli; Federico Santoni; Michel Guipponi; Biljana Dumevska; Outi Hovatta; Marisa Jaconi

Congenital heart defects (CHD) occur in approximately 50% of patients with Down syndrome (DS); the mechanisms for this occurrence however remain unknown. In order to understand how these defects evolve in early development in DS, we focused on the earliest stages of cardiogenesis to ascertain perturbations in development leading to CHD. Using a trisomy 21 (T21) sibling human embryonic stem cell (hESC) model of DS, we show that T21‐hESC display many significant differences in expression of genes and cell populations associated with mesodermal, and more notably, secondary heart field (SHF) development, in particular a reduced number of ISL1+ progenitor cells. Furthermore, we provide evidence for two candidate genes located on chromosome 21, ETS2 and ERG, whose overexpression during cardiac commitment likely account for the disruption of SHF development, as revealed by downregulation or overexpression experiments. Additionally, we uncover an abnormal electrophysiological phenotype in functional T21 cardiomyocytes, a result further supported by mRNA expression data acquired using RNA‐Seq. These data, in combination, revealed a cardiomyocyte‐specific phenotype in T21 cardiomyocytes, likely due to the overexpression of genes such as RYR2, NCX, and L‐type Ca2+ channel. These results contribute to the understanding of the mechanisms involved in the development of CHD. Stem Cells 2015;33:1434–1446


In Vitro Cellular & Developmental Biology – Animal | 2010

Derivation of three new human embryonic stem cell lines

Cara K. Bradley; Omar Chami; Teija T. Peura; Alexis Bosman; Biljana Dumevska; Uli Schmidt; Tomas Stojanov

Human embryonic stem cells are pluripotent cells capable of extensive self-renewal and differentiation to all cells of the embryo proper. Here, we describe the derivation and characterization of three Sydney IVF human embryonic stem cell lines not already reported elsewhere, designated SIVF001, SIVF002, and SIVF014. The cell lines display typical compact colony morphology of embryonic stem cells, have stable growth rates over more than 40 passages and are cytogenetically normal. Furthermore, the cell lines express pluripotency markers including Nanog, Oct4, SSEA3 and Tra-1-81, and are capable of generating teratoma cells derived from each of the three germ layers in immunodeficient mice. These experiments show that the cell lines constitute pluripotent stem cell lines.


Stem Cell Research | 2016

Derivation of human embryonic stem cell line Genea019.

Biljana Dumevska; Alexis Bosman; Robert McKernan; Divya Goel; Uli Schmidt; Teija T. Peura

The Genea019 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XX karyotype, female Allele pattern and unaffected Htt CAG repeat length, compared to HD affected sibling Genea020. Pluripotency of Genea019 was demonstrated with 75% of cells expressing Nanog, 89% Oct4, 48% Tra1-60 and 85% SSEA4, a Pluritest Pluripotency score of 22.97, Novelty score of 1.42, tri-lineage teratoma formation and Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and any visible contamination.


Stem Cells International | 2016

Human Hepatocyte-Derived Induced Pluripotent Stem Cells: MYC Expression, Similarities to Human Germ Cell Tumors, and Safety Issues

Carmen Unzu; Marc Friedli; Alexis Bosman; Marisa Jaconi; Barbara Wildhaber; Anne-Laure Rougemont

Induced pluripotent stem cells (iPSC) are a most promising approach to the development of a hepatocyte transplantable mass sufficient to induce long-term correction of inherited liver metabolic diseases, thus avoiding liver transplantation. Their intrinsic self-renewal ability and potential to differentiate into any of the three germ layers identify iPSC as the most promising cell-based therapeutics, but also as drivers of tumor development. Teratoma development currently represents the gold standard to assess iPSC pluripotency. We analyzed the tumorigenic potential of iPSC generated from human hepatocytes (HEP-iPSC) and compared their immunohistochemical profiles to that of tumors developed from fibroblast and hematopoietic stem cell-derived iPSC. HEP-iPSC generated tumors significantly presented more malignant morphological features than reprogrammed fibroblasts or CD34+ iPSC. Moreover, the protooncogene myc showed the strongest expression in HEP-iPSC, compared to only faint expression in the other cell subsets. Random integration of transgenes and the use of potent protooncogenes such as myc might be a risk factor for malignant tumor development if hepatocytes are used for reprogramming. Nonviral vector delivery systems or reprogramming of cells obtained from less invasive harvesting methods would represent interesting options for future developments in stem cell-based approaches for liver metabolic diseases.


Stem Cell Research | 2016

Derivation of Genea002 human embryonic stem cell line.

Biljana Dumevska; Alexis Bosman; Robert McKernan; Divya Goel; Teija T. Peura; Uli Schmidt

The Genea002 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XY karyotype by CGH and male Allele pattern through STR analysis. Pluripotency of Genea002 was demonstrated with 75% of cells expressing Nanog, 93% Oct4, 83% Tra1-60 and 98% SSEA4, a Pluritest pluripotency score of 24.55, Novelty score of 1.39, teratomas with tissues from all embryonic germ layers and Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and any visible contamination.


Cell Stem Cell | 2007

The Generation of Six Clinical-Grade Human Embryonic Stem Cell Lines

Jeremy Micah Crook; Teija T. Peura; Lucy Kravets; Alexis Bosman; Jeremy James Buzzard; Rachel Horne; Hannes Hentze; Norris Ray Dunn; Robert Zweigerdt; Florence Chua; Alan Upshall; Alan Colman

Collaboration


Dive into the Alexis Bosman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Teija T. Peura

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge