Alexis Huxley
European Southern Observatory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexis Huxley.
Astronomical Telescopes and Instrumentation | 2003
Andreas Glindemann; J. Algomedo; R. Amestica; Pascal Ballester; Bertrand Bauvir; E. Bugueño; Serge Correia; F. Delgado; Francoise Delplancke; Frederic Derie; Ph. Duhoux; E. Di Folco; Alberto Gennai; Bruno Gilli; Paul Giordano; Ph. Gitton; Stephane Guisard; Nico Housen; Alexis Huxley; Pierre Kervella; M. Kiekebusch; Bertrand Koehler; Samuel A. Leveque; Antonio Longinotti; Serge Menardi; S. Morel; Francesco Paresce; T. Phan Duc; A. Richichi; M. Schöller
The Very Large Telescope (VLT) Observatory on Cerro Paranal (2635 m) in Northern Chile is approaching completion. After the four 8-m Unit Telescopes (UT) individually saw first light in the last years, two of them were combined for the first time on October 30, 2001 to form a stellar interferometer, the VLT Interferometer. The remaining two UTs will be integrated into the interferometric array later this year. In this article, we will describe the subsystems of the VLTI and the planning for the following years.
Proceedings of SPIE | 2004
Andreas Glindemann; Maja Albertsen; Luigi Andolfato; Gerardo Avila; Pascal Ballester; Bertrand Bauvir; Francoise Delplancke; Frederic Derie; Martin Dimmler; Philippe Duhoux; Emmanuel di Folco; R. Frahm; Emmanuel Galliano; Bruno Gilli; Paul Giordano; Philippe B. Gitton; Stephane Guisard; Nico Housen; Christian A. Hummel; Alexis Huxley; Robert Karban; Pierre Kervella; M. Kiekebusch; Bertrand Koehler; Samuel A. Leveque; Tom Licha; Antonio Longinotti; Derek J. McKay; Serge Menardi; Guy J. Monnet
The Very Large Telescope Interferometer (VLTI) on Cerro Paranal (2635 m) in Northern Chile reached a major milestone in September 2003 when the mid infrared instrument MIDI was offered for scientific observations to the community. This was only nine months after MIDI had recorded first fringes. In the meantime, the near infrared instrument AMBER saw first fringes in March 2004, and it is planned to offer AMBER in September 2004. The large number of subsystems that have been installed in the last two years - amongst them adaptive optics for the 8-m Unit Telescopes (UT), the first 1.8-m Auxiliary Telescope (AT), the fringe tracker FINITO and three more Delay Lines for a total of six, only to name the major ones - will be described in this article. We will also discuss the next steps of the VLTI mainly concerned with the dual feed system PRIMA and we will give an outlook to possible future extensions.
Astronomical Telescopes and Instrumentation | 2003
Marc Ferrari; Gerard R. Lemaitre; Silvio P. Mazzanti; Frederic Derie; Alexis Huxley; J. Lemerrer; Patrick Lanzoni; Pascal Dargent; Anders Wallander
As the result of an analysis pursued from the very beginning, today the VLT Interferometer is the only interferometer allowing to have a 2 arcsec interferometric field of view (f.o.v) available at the instruments entrance. This accessible interferometric field is the direct result of a careful pupil transfer from the individual telescopes to the central laboratory, unique feature of the VLTI. For this goal it has been necessary to develop a new optical device, the Variable Curvature Mirror (VCM.), using large deformation theory of elasticity, and advanced techniques in optical fabrication. The possibility with the VLTI to use various baselines, from 8 to 200 m with UTs or ATs, leads to severe conditions on the VCM curvature range. A given delay-line, and its associated VCM, should be able to transfer a pupil to the interferometric laboratory from a very far or relatively close position of an ATs. Considering the f.o.v required in the VLTI (2 arcsec), the delay-lines strokes or the OPD to compensate for, and the various locations of the UTs and ATs stations, the curvature of the VCM has to be continuously variable within a range from 84 mm-1 to 2800 mm-1. The location of the VCM in the delay-line system, on the piezo-translator used for small OPD compensation, led to minimize its dimensions and to realize a small active mirror with a 16mm diameter. With this small optical aperture, the VCM range of curvature corresponds to a f ratio from f/∞ to f/2.625. The two first VCM complete systems (mirror, mechanics and control command software) have been achieved in 2001/2002 and will be installed in the VLTI delay-lines during fall 2002. Their final performances (optical quality, pupil transfer accuracy, etc.) are reviewed.
Archive | 2002
Andreas Glindemann; Bertrand Bauvir; Roy Van Boekel; Serge Correia; Francoise Delplancke; Frederic Derie; Emmanuel di Folco; Alberto Gennai; Philippe B. Gitton; Alexis Huxley; Nico Housen; Pierre Kervella; Bertrand Koehler; Samuel A. Leveque; Serge Menardi; S. Morel; Francesco Paresce; Than Phan Duc; A. Richichi; M. Schöller; M. Tarenghi; Anders Wallander; Rainer Wilhelm; Markus Wittkowski
The completed VLTI with eight Delay Lines and eight ATs forms the basis for the second generation instrumentation. We describe the events up to first fringes with the test instrument VINCI using the siderostats, and the planning for the immediate future. Multi beam combination for ‘smoother images’ will be briefly discussed as well as artificial guide stars for fringe tracking. New technological developments like fiber optics amplifiers and integrated optics in combination with STJ open the door for a new type of interferometric arrays. Baselines as long as a a few kilometres come into reach. Examples of these second generation interferometers will be given.
Proceedings of SPIE | 2004
Bertrand Bauvir; Anders Wallander; Philippe Duhoux; Alexis Huxley; Robert Karban
The increasing number of digital control applications in the context of the VLT, and particularly the VLT Interferometer, brought the need to find a common solution to address the problems of performance and maintainability. Tools for Advanced Control (TAC) aims at helping both control and software engineers in the design and prototyping of real-time control applications by providing them with a set of standard functions and an easy way to combine them to create complex control algorithms. In this paper we describe the software architecture and design of TAC, the VLT standard for digital control applications. Algorithms are described at schematic level and take the form of a set of interconnected function blocks. Periodical execution of the algorithm as well as features like runtime modification of parameters and probing of internal data are also managed by TAC, allowing the application designers to avoid spending time writing low value software code and therefore focus on application-specific concerns. We also summarize the results achieved on the first actual applications using TAC, to manage real-time control or digital signal processing algorithms, currently deployed and being commissioned at Paranal Observatory.
Proceedings of SPIE | 2004
S. Morel; Martin Vannier; Serge Menardi; Fabio Biancat-Marchet; Michael D. Fischer; Philippe B. Gitton; Andreas Glindemann; Stephane Guisard; Nicholas Haddad; Nico Housen; Alexis Huxley; M. Kiekebusch; Antonio Longinotti; Thanh Phan Duc; Markus Schoeller; Anders Wallander
The ARAL system of the VLTI is a multipurpose facility that helps to have the interferometric instruments ready for night observations. It consists of an artificial source (allowing a Mach-Zehnder mode of the interferometric instruments for autotest), an alignment unit (verifying the position of the celestial target in the VLTI field-of-view), and an optical path router (controlling the optical switchyard and the instrument feeding-optics in the VLTI laboratory). With the multiplication of VLTI instruments and their specific features (wavelength coverage, number of beams), an upgrade of ARAL (from its November 2002 version) had to be carried out: the alignment unit has been redesigned, as well as the artificial source. This source will provide a point in the visible and in J, H, K and N infrared bands, split into four beams (with a zero optical path difference at the reference position). After a description of the optomechanics and of the computer architecture of ARAL, we detail the difficulties of building an interferometric artificial source with a wide spectral range.
Proceedings of SPIE | 2004
Anders Wallander; Bertrand Bauvir; Martin Dimmler; R. Donaldson; Enrico Fedrigo; Bruno Gilli; Nico Housen; Alexis Huxley; Thanh Phan Duc
In the last two years the Very Large Telescope Interferometer (VLTI) has, on one hand grown with the addition of new subsystems, on the other hand matured with experience from commissioning and operation. Two adaptive optics systems for the 8-m unit telescopes have been fully integrated in the VLTI infrastructure. The first scientific instrument, MIDI, has been commissioned and is now being offered to the community. A second scientific instrument AMBER is currently being commissioned. The performance of the interferometer is being enhanced by the installation of a dedicated fringe sensor, FINITO, and a tip-tilt sensor in the interferometric laboratory, IRIS, and the associated control loops. Four relocatable auxiliary 1.8 m telescopes and three additional delay lines are being added to the infrastructure. At the same time the design and development of the dual feed PRIMA facility, which will have major impact on the existing control system, is in full swing. In this paper we review the current status of the VLTI control system and assess the impact on complexity and reliability caused by this explosion in size. We describe the applied methods and technologies to maximize the performance and reliability in order to keep VLTI and its control system a competitive, reliable and productive facility.
Astrophysics and Space Science | 2003
Andreas Glindemann; J. Algomedo; R. Amestica; Pascal Ballester; Bertrand Bauvir; E. Bugueño; Serge Correia; F. Delgado; Francoise Delplancke; Frederic Derie; Ph. Duhoux; E. Di Folco; Alberto Gennai; Bruno Gilli; Paul Giordano; Ph. Gitton; Stephane Guisard; Nico Housen; Alexis Huxley; Pierre Kervella; M. Kiekebusch; Bertrand Koehler; Samuel A. Leveque; Antonio Longinotti; Serge Menardi; S. Morel; Francesco Paresce; T. Phan Duc; A. Richichi; M. Schöller
Astronomical Telescopes and Instrumentation | 2002
Anders Wallander; Javier Argomedo; Pascal Ballester; Bertrand Bauvir; Mauro Comin; R. Donaldson; Philippe Duhoux; Alberto Gennai; Bruno Gilli; Nico Housen; Alexis Huxley; Robert Karban; Mario Kiekebush; Antonio Longinotti; Ivan M. Munoz; Than Phan Duc
Archive | 2001
Andreas Glindemann; Bertrand Bauvir; Francoise Delplancke; Frederic Derie; Emmanuel di Folco; Alberto Gennai; Ph. Gitton; Nico Housen; Alexis Huxley; P. Kervella; Bertrand Koehler; Samuel A. Leveque; Antonio Longinotti; Serge Menardi; S. Morel; Francesco Paresce; Thanh Phan Duc; A. Richichi; M. Schöller; M. Tarenghi; Anders Wallander; Markus Wittkowski; Rainer Wilhelm