Alexis Perry
University of Exeter
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexis Perry.
Organic Letters | 2010
Johannes E. M. N. Klein; Alexis Perry; David S. Pugh; Richard Taylor
The preparation of 3,3-disubstituted oxindoles by a formal C-H, Ar-H coupling of anilides is described. Highly efficient conditions have been identified using catalytic (5 mol %) Cu(OAc)(2).H(2)O with atmospheric oxygen as the reoxidant; no additional base is required, and the reaction can be run in toluene or mesitylene. Optimization studies are reported together with a scope and limitation investigation based on variation of the anilide precursors. The application of this methodology to prepare a key intermediate for the total synthesis of the anticancer, analgesic oxindole alkaloid Horsfiline is also described.
Nitric Oxide | 2014
Bartosz Szczesny; Katalin Módis; Kazunori Yanagi; Ciro Coletta; Sophie Le Trionnaire; Alexis Perry; Mark E. Wood; Matthew Whiteman; Csaba Szabó
The purpose of the current study was to investigate the effect of the recently synthesized mitochondrially-targeted H2S donor, AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5yl)phenoxy)decyl) triphenylphosphonium bromide], on bioenergetics, viability, and mitochondrial DNA integrity in bEnd.3 murine microvascular endothelial cells in vitro, under normal conditions, and during oxidative stress. Intracellular H2S was assessed by the fluorescent dye 7-azido-4-methylcoumarin. For the measurement of bioenergetic function, the XF24 Extracellular Flux Analyzer was used. Cell viability was estimated by the combination of the MTT and LDH methods. Oxidative protein modifications were measured by the Oxyblot method. Reactive oxygen species production was monitored by the MitoSOX method. Mitochondrial and nuclear DNA integrity were assayed by the Long Amplicon PCR method. Oxidative stress was induced by addition of glucose oxidase. Addition of AP39 (30-300 nM) to bEnd.3 cells increased intracellular H2S levels, with a preferential response in the mitochondrial regions. AP39 exerted a concentration-dependent effect on mitochondrial activity, which consisted of a stimulation of mitochondrial electron transport and cellular bioenergetic function at lower concentrations (30-100 nM) and an inhibitory effect at the higher concentration of 300 nM. Under oxidative stress conditions induced by glucose oxidase, an increase in oxidative protein modification and an enhancement in MitoSOX oxidation was noted, coupled with an inhibition of cellular bioenergetic function and a reduction in cell viability. AP39 pretreatment attenuated these responses. Glucose oxidase induced a preferential damage to the mitochondrial DNA; AP39 (100 nM) pretreatment protected against it. In conclusion, the current paper documents antioxidant and cytoprotective effects of AP39 under oxidative stress conditions, including a protection against oxidative mitochondrial DNA damage.
Chemistry & Biology | 2009
Heather K. Bone; Teresa Damiano; Stephen Bartlett; Alexis Perry; Julie Letchford; Yolanda Sanchez Ripoll; Adam Nelson; Melanie J. Welham
The ability to propagate embryonic stem cells (ESCs) while maintaining their pluripotency is critical if their potential use in regenerative medicine is to be realized. The mechanisms controlling ESC self-renewal are under intense investigation, and glycogen synthase kinase 3 (GSK-3) has been implicated in regulating both self-renewal and differentiation. To clarify its role in ESCs we have used chemical genetics. We synthesized a series of bisindolylmaleimides, a subset of which inhibit GSK-3 in murine ESCs and robustly enhance self-renewal in the presence of leukemia inhibitory factor (LIF) and serum, but not in the absence of LIF. Importantly, these molecules appear selective for GSK-3 and do not perturb other signaling pathways regulating self-renewal. Our study clarifies the functional importance of GSK-3 in regulation of ESC self-renewal and provides tools for investigating its role further.
Antioxidants & Redox Signaling | 2011
Qian-Chen Yong; Jia Ling Cheong; Fei Hua; Lih-Wen Deng; Yok Moi Khoo; How Sung Lee; Alexis Perry; Mark E. Wood; Matthew Whiteman; Jin-Song Bian
Both nitric oxide (NO) and hydrogen sulfide (H(2)S) are two important gaseous mediators regulating heart function. The present study examined the interaction between these two biological gases and its role in the heart. We found that l-arginine, a substrate of NO synthase, decreased the amplitudes of myocyte contraction and electrically induced calcium transients. Sodium hydrogen sulfide (an H(2)S donor), which alone had minor effect, reversed the negative inotropic effects of l-arginine. The effect of l-arginine + sodium hydrogen sulfide was abolished by three thiols (l-cysteine, N-acetyl-cysteine, and glutathione), suggesting that the effect of H(2)S + NO is thiol sensitive. The stimulatory effect on heart contractility was also induced by GYY4137, a slow-releasing H(2)S donor, when used together with sodium nitroprusside, an NO-releasing donor. More importantly, enzymatic generation of H(2)S from recombinant cystathionine-γ-lyase protein also interacted with endogenous NO generated from l-arginine to stimulate heart contraction. In summary, our data suggest that endogenous NO may interact with H(2)S to produce a new biological mediator that produces positive inotropic effect. The crosstalk between H(2)S and NO also suggests an intriguing potential for the endogenous formation of a thiol-sensitive molecule, which may be of physiological significance in the heart.
MedChemComm | 2014
Sophie Le Trionnaire; Alexis Perry; Bartosz Szczesny; Csaba Szabó; Paul G. Winyard; Jacqueline L. Whatmore; Mark E. Wood; Matthew Whiteman
Synthesis and bioavailability of the endogenous gasomediator hydrogen sulfide (H2S) is perturbed in many disease states, including those involving mitochondrial dysfunction. There is intense interest in developing pharmacological agents to generate H2S. We have synthesised a novel H2S donor molecule coupled to a mitochondria-targeting moiety (triphenylphosphonium; TPP+) and compared the effectiveness of the compound against a standard non-TPP+ containing H2S donor (GYY4137) in the inhibition of oxidative stress-induced endothelial cell death. Our study suggests mitochondria-targeted H2S donors are useful pharmacological tools to study the mitochondrial physiology of H2S in health and disease.
Chemistry: A European Journal | 2014
Timothy Hurst; Ryan M. Gorman; Pauline Drouhin; Alexis Perry; Richard Taylor
A copper(II)-catalysed approach to oxindoles, thio-oxindoles, 3,4-dihydro-1H-quinolin-2-ones, and 1,2,3,4-tetrahydroquinolines via formal C-H, Ar-H coupling is described. In a new variant, copper(II) 2-ethylhexanoate has been identified as an inexpensive and efficient catalyst for this transformation, which utilises atmospheric oxygen as the re-oxidant.
Nitric Oxide | 2015
Lenka Tomasova; Michaela Pavlovičová; Lubica Malekova; Anton Misak; Frantisek Kristek; Marian Grman; Sona Cacanyiova; Milan Tomasek; Zuzana Tomaskova; Alexis Perry; Mark E. Wood; Lubica Lacinova; Karol Ondrias; Matthew Whiteman
H2S donor molecules have the potential to be viable therapeutic agents. The aim of this current study was (i) to investigate the effects of a novel triphenylphosphonium derivatised dithiolethione (AP39), in the presence and absence of reduced nitric oxide bioavailability and (ii) to determine the effects of AP39 on myocardial membrane channels; CaV3, RyR2 and Cl(-). Normotensive, L-NAME- or phenylephrine-treated rats were administered Na2S, AP39 or control compounds (AP219 and ADT-OH) (0.25-1 µmol kg(-1)i.v.) and haemodynamic parameters measured. The involvement of membrane channels T-type Ca(2+) channels CaV3.1, CaV3.2 and CaV3.3 as well as Ca(2+) ryanodine (RyR2) and Cl(-) single channels derived from rat heart sarcoplasmic reticulum were also investigated. In anaesthetised Wistar rats, AP39 (0.25-1 µmol kg(-1) i.v) transiently decreased blood pressure, heart rate and pulse wave velocity, whereas AP219 and ADT-OH and Na2S had no significant effect. In L-NAME treated rats, AP39 significantly lowered systolic blood pressure for a prolonged period, decreased heart rate and arterial stiffness. In electrophysiological studies, AP39 significantly inhibited Ca(2+) current through all three CaV3 channels. AP39 decreased RyR2 channels activity and increased conductance and mean open time of Cl(-) channels. This study suggests that AP39 may offer a novel therapeutic opportunity in conditions whereby (•)NO and H2S bioavailability are deficient such as hypertension, and that CaV3, RyR2 and Cl(-) cardiac membrane channels might be involved in its biological actions.
Pharmacological Research | 2016
Domokos Gerő; Roberta Torregrossa; Alexis Perry; Alicia Waters; Sophie Le-Trionnaire; Jacqueline L. Whatmore; Mark E. Wood; Matthew Whiteman
Graphical abstract
MedChemComm | 2015
Benjamin E. Alexander; Simon J. Coles; Bridget Fox; T. Khan; Joseph Maliszewski; Alexis Perry; Mateusz B. Pitak; Matthew Whiteman; Mark E. Wood
A combination of NMR spectroscopy, mass spectrometry and chemical synthesis was used to elucidate the two-step hydrolytic decomposition pathway of the slow-release hydrogen sulfide (H2S) donor GYY4137 and the key decomposition product was also prepared by an independent synthetic route. The (dichloromethane-free) sodium salt of the phosphonamidodithioate GYY4137 was also produced as a pharmaceutically more acceptable salt. In contrast with GYY4137 and its sodium salt, the decomposition product did not generate H2S or exert cytoprotective or anti-inflammatory effects in oxidatively stressed human Jurkat T-cells and LPS-treated murine RAW264.7 macrophages. The decomposition product represents a useful control compound for determining the biological and pharmacological effects of H2S generated from GYY4137.
European Journal of Inorganic Chemistry | 2002
Susan K. Armstrong; Ronald J. Cross; Louis J. Farrugia; David A. Nichols; Alexis Perry
Efficient syntheses are described for the new bridging bis-phosphanes DPPN (4) and DPEN (5) built around the restricted rigidity of a 2,7-dialkoxynaphthalene backbone. These show marked preference for bridging pairs of metal atoms (PtII, Mo0) to form metallamacrocycles or oligomers. Single-crystal X-ray structure determinations of four dimeric complexes with PtII and Mo0 are reported. The dimeric platinum complexes can be obtained as the kinetically favoured trans,trans products, which isomerise to the cis,cis forms in the presence of free ligand. cis,cis-[Pt2Cl4(DPEN)2] (12) shows marked hydroformylation catalytic activity.