Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexis Vallée-Bélisle is active.

Publication


Featured researches published by Alexis Vallée-Bélisle.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes

Fan Xia; Xiaolei Zuo; Renqiang Yang; Yi Xiao; Di Kang; Alexis Vallée-Bélisle; Xiong Gong; Jonathan D. Yuen; Ben B. Y. Hsu; Alan J. Heeger; Kevin W. Plaxco

We have demonstrated a novel sensing strategy employing single-stranded probe DNA, unmodified gold nanoparticles, and a positively charged, water-soluble conjugated polyelectrolyte to detect a broad range of targets including nucleic acid (DNA) sequences, proteins, small molecules, and inorganic ions. This nearly “universal” biosensor approach is based on the observation that, while the conjugated polyelectrolyte specifically inhibits the ability of single-stranded DNA to prevent the aggregation of gold-nanoparticles, no such inhibition is observed with double-stranded or otherwise “folded” DNA structures. Colorimetric assays employing this mechanism for the detection of hybridization are sensitive and convenient—picomolar concentrations of target DNA are readily detected with the naked eye, and the sensor works even when challenged with complex sample matrices such as blood serum. Likewise, by employing the binding-induced folding or association of aptamers we have generalized the approach to the specific and convenient detection of proteins, small molecules, and inorganic ions. Finally, this new biosensor approach is quite straightforward and can be completed in minutes without significant equipment or training overhead.


Protein Science | 2005

Protein folding : Defining a "standard" set of experimental conditions and a preliminary kinetic data set of two-state proteins

Karen L. Maxwell; David Wildes; Arash Zarrine-Afsar; Miguel A. De Los Rios; Andrew G. Brown; Claire T. Friel; Linda Hedberg; Jia-Cherng Horng; Diane Bona; Erik J. Miller; Alexis Vallée-Bélisle; Ewan R. G. Main; Francesco Bemporad; Linlin Qiu; Kaare Teilum; Ngoc Diep Vu; A. Edwards; Ingo Ruczinski; Flemming M. Poulsen; Stephen W. Michnick; Fabrizio Chiti; Yawen Bai; Stephen J. Hagen; Luis Serrano; Mikael Oliveberg; Daniel P. Raleigh; Pernilla Wittung-Stafshede; Sheena E. Radford; Sophie E. Jackson; Tobin R. Sosnick

Recent years have seen the publication of both empirical and theoretical relationships predicting the rates with which proteins fold. Our ability to test and refine these relationships has been limited, however, by a variety of difficulties associated with the comparison of folding and unfolding rates, thermodynamics, and structure across diverse sets of proteins. These difficulties include the wide, potentially confounding range of experimental conditions and methods employed to date and the difficulty of obtaining correct and complete sequence and structural details for the characterized constructs. The lack of a single approach to data analysis and error estimation, or even of a common set of units and reporting standards, further hinders comparative studies of folding. In an effort to overcome these problems, we define here a “consensus” set of experimental conditions (25°C at pH 7.0, 50 mM buffer), data analysis methods, and data reporting standards that we hope will provide a benchmark for experimental studies. We take the first step in this initiative by describing the folding kinetics of 30 apparently two‐state proteins or protein domains under the consensus conditions. The goal of our efforts is to set uniform standards for the experimental community and to initiate an accumulating, self‐consistent data set that will aid ongoing efforts to understand the folding process.


Methods in Enzymology | 2000

[14] Detection of protein-protein interactions by protein fragment complementation strategies

Stephen W. Michnick; Ingrid Remy; François-X. Campbell-Valois; Alexis Vallée-Bélisle; Joelle N. Pelletier

Publisher Summary This chapter presents the basic concept of protein fragment complementation assays (PCAs) and how they are designed, with particular attention to the system developed based on murine dihydrofolate reductase (mDHFR). It then discusses several applications of the assay, including a simple, large-scale library-versus-library screening strategy in Escherichia coli . The implementation of mammalian assays is discussed, including applications to the quantitative detection of induced protein interactions and allosteric transitions in intact cells. Finally, the generality of the PCA strategy is demonstrated with examples of assays that are designed on the basis of other enzymes including glycinamide ribonucleotide transformylase, aminoglycoside kinase, and hygromycin B kinase.


Journal of the American Chemical Society | 2014

Programmable pH-triggered DNA nanoswitches.

Andrea Idili; Alexis Vallée-Bélisle; Francesco Ricci

We have designed programmable DNA-based nanoswitches whose closing/opening can be triggered over specific different pH windows. These nanoswitches form an intramolecular triplex DNA structure through pH-sensitive parallel Hoogsteen interactions. We demonstrate that by simply changing the relative content of TAT/CGC triplets in the switches, we can rationally tune their pH dependence over more than 5 pH units. The ability to design DNA-based switches with tunable pH dependence provides the opportunity to engineer pH nanosensors with unprecedented wide sensitivity to pH changes. For example, by mixing in the same solution three switches with different pH sensitivity, we developed a pH nanosensor that can precisely monitor pH variations over 5.5 units of pH. With their fast response time (<200 ms) and high reversibility, these pH-triggered nanoswitches appear particularly suitable for applications ranging from the real-time monitoring of pH changes in vivo to the development of pH sensitive smart nanomaterials.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Thermodynamic basis for the optimization of binding-induced biomolecular switches and structure-switching biosensors

Alexis Vallée-Bélisle; Francesco Ricci; Kevin W. Plaxco

Binding-induced biomolecular switches are used throughout nature and, increasingly, throughout biotechnology for the detection of chemical moieties and the subsequent transduction of this detection into useful outputs. Here we show that the thermodynamics of these switches are quantitatively described by a simple 3-state population-shift model, in which the equilibrium between a nonbinding, nonsignaling state and the binding-competent, signaling state is shifted toward the latter upon target binding. Because of this, their performance is determined by the tradeoff inherent to their switching thermodynamics; while a switching equilibrium constant favoring the nonbinding, nonsignaling, conformation ensures a larger signal change (more molecules are poised to respond), it also reduces affinity (binding must overcome a more unfavorable conformational free energy). We then derive and employ the relationship between switching thermodynamics and switch signaling to rationally tune the dynamic range and detection limit of a representative structure-switching biosensor, a molecular beacon, over 4 orders of magnitude. These findings demonstrate that the performance of biomolecular switches can be rationally tuned via mutations that alter their switching thermodynamics and suggest a mechanism by which the performance of naturally occurring switches may have evolved.


Analytical Chemistry | 2010

Using Triplex-Forming Oligonucleotide Probes for the Reagentless, Electrochemical Detection of Double-Stranded DNA

Adriana S. Patterson; Felice Caprio; Alexis Vallée-Bélisle; Danila Moscone; Kevin W. Plaxco; Giuseppe Palleschi; Francesco Ricci

We report a reagentless, electrochemical sensor for the detection of double-stranded DNA targets that employs triplex-forming oligonucleotides (TFOs) as its recognition element. These sensors are based on redox-tagged TFO probes strongly chemisorbed onto an interrogating gold electrode. Upon the addition of the relevant double-stranded DNA target, the probe forms a rigid triplex structure via reverse Hoogsteen base pairing in the major groove. The formation of the triplex impedes contact between the probes redox moiety and the interrogating electrode, thus signaling the presence of the target. We first demonstrated the proof of principle of this approach by using a well-characterized 22-base polypurine TFO sequence that readily detects a synthetic, double-stranded DNA target. We then confirmed the generalizability of our platform with a second probe, a 19-base polypyrimidine TFO sequence that targets a polypurine tract (PPT) sequence conserved in all HIV-1 strains. Both sensors rapidly and specifically detect their double-stranded DNA targets at concentrations as low as ~10 nM and are selective enough to be employed directly in complex sample matrices such as blood serum. Moreover, to demonstrate real-world applicability of this new sensor platform, we have successfully detected unpurified, double-stranded PCR amplicons containing the relevant conserved HIV-1 sequence.


Journal of the American Chemical Society | 2012

Engineering Biosensors with Extended, Narrowed, or Arbitrarily Edited Dynamic Range

Alexis Vallée-Bélisle; Francesco Ricci; Kevin W. Plaxco

Biomolecular recognition has long been an important theme in artificial sensing technologies. A current limitation of protein- and nucleic acid-based recognition, however, is that the useful dynamic range of single-site binding typically spans an 81-fold change in target concentration, an effect that limits the utility of biosensors in applications calling for either great sensitivity (a steeper relationship between target concentration and output signal) or the quantification of more wide-ranging concentrations. In response, we have adapted strategies employed by nature to modulate the input-output response of its biorecognition systems to rationally edit the useful dynamic range of an artificial biosensor. By engineering a structure-switching mechanism to tune the affinity of a receptor molecule, we first generated a set of receptor variants displaying similar specificities but different target affinities. Using combinations of these receptor variants (signaling and nonsignaling), we then rationally extended (to 900000-fold), narrowed (to 5-fold), and edited (three-state) the normally 81-fold dynamic range of a representative biosensor. We believe that these strategies may be widely applicable to technologies reliant on biorecognition.


Journal of the American Chemical Society | 2012

Using Distal-Site Mutations and Allosteric Inhibition To Tune, Extend, and Narrow the Useful Dynamic Range of Aptamer-Based Sensors

Alessandro Porchetta; Alexis Vallée-Bélisle; Kevin W. Plaxco; Francesco Ricci

Here we demonstrate multiple, complementary approaches by which to tune, extend, or narrow the dynamic range of aptamer-based sensors. Specifically, we employ both distal-site mutations and allosteric control to tune the affinity and dynamic range of a fluorescent aptamer beacon. We show that allosteric control, achieved by using a set of easily designed oligonucleotide inhibitors that competes against the folding of the aptamer, allows rational fine-tuning of the affinity of our model aptamer across 3 orders of magnitude of target concentration with greater precision than that achieved using mutational approaches. Using these methods, we generate sets of aptamers varying significantly in target affinity and then combine them to recreate several of the mechanisms employed by nature to narrow or broaden the dynamic range of biological receptors. Such ability to finely control the affinity and dynamic range of aptamers may find many applications in synthetic biology, drug delivery, and targeted therapies, fields in which aptamers are of rapidly growing importance.


Journal of the American Chemical Society | 2012

Quantification of Transcription Factor Binding in Cell Extracts Using an Electrochemical, Structure-Switching Biosensor

Andrew J. Bonham; Kuangwen Hsieh; B. Scott Ferguson; Alexis Vallée-Bélisle; Francesco Ricci; H. Tom Soh; Kevin W. Plaxco

Transcription factor expression levels, which sensitively reflect cellular development and disease state, are typically monitored via cumbersome, reagent-intensive assays that require relatively large quantities of cells. Here, we demonstrate a simple, quantitative approach to their detection based on a simple, electrochemical sensing platform. This sensor sensitively and quantitatively detects its target transcription factor in complex media (e.g., 250 μg/mL crude nuclear extracts) in a convenient, low-reagent process requiring only 10 μL of sample. Our approach thus appears a promising means of monitoring transcription factor levels.


Journal of the American Chemical Society | 2015

A Highly Selective Electrochemical DNA-Based Sensor That Employs Steric Hindrance Effects to Detect Proteins Directly in Whole Blood

Sahar Sadat Mahshid; Sébastien Camiré; Francesco Ricci; Alexis Vallée-Bélisle

Here we describe a highly selective DNA-based electrochemical sensor that utilizes steric hindrance effects to signal the presence of large macromolecules in a single-step procedure. We first show that a large macromolecule, such as a protein, when bound to a signaling DNA strand generates steric hindrance effects, which limits the ability of this DNA to hybridize to a surface-attached complementary strand. We demonstrate that the efficiency of hybridization of this signaling DNA is inversely correlated with the size of the molecule attached to it, following a semilogarithmic relationship. Using this steric hindrance hybridization assay in an electrochemical format (eSHHA), we demonstrate the multiplexed, quantitative, one-step detection of various macromolecules in the low nanomolar range, in <10 min directly in whole blood. We discuss the potential applications of this novel signaling mechanism in the field of point-of-care diagnostic sensors.

Collaboration


Dive into the Alexis Vallée-Bélisle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Idili

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Alessandro Porchetta

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Di Kang

University of California

View shared research outputs
Top Co-Authors

Avatar

Fan Xia

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna J. Simon

University of California

View shared research outputs
Top Co-Authors

Avatar

Renqiang Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge