Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alfio Bonanno is active.

Publication


Featured researches published by Alfio Bonanno.


Science | 2011

Ensemble asteroseismology of solar-type stars with the NASA Kepler mission.

W. J. Chaplin; Hans Kjeldsen; Jørgen Christensen-Dalsgaard; Sarbani Basu; A. Miglio; T. Appourchaux; Timothy R. Bedding; Y. Elsworth; R. A. García; R. L. Gilliland; Léo Girardi; G. Houdek; C. Karoff; S. D. Kawaler; T. S. Metcalfe; J. Molenda-Żakowicz; M. J. P. F. G. Monteiro; M. J. Thompson; G. A. Verner; J. Ballot; Alfio Bonanno; I. M. Brandão; Anne-Marie Broomhall; H. Bruntt; T. L. Campante; E. Corsaro; O. L. Creevey; G. Doğan; Lisa Esch; Ning Gai

Measurements of 500 Sun-like stars show that their properties differ from those predicted by stellar population models. In addition to its search for extrasolar planets, the NASA Kepler mission provides exquisite data on stellar oscillations. We report the detections of oscillations in 500 solar-type stars in the Kepler field of view, an ensemble that is large enough to allow statistical studies of intrinsic stellar properties (such as mass, radius, and age) and to test theories of stellar evolution. We find that the distribution of observed masses of these stars shows intriguing differences to predictions from models of synthetic stellar populations in the Galaxy.


Nature | 2007

A giant planet orbiting the 'extreme horizontal branch' star V 391 Pegasi

R. Silvotti; S. Schuh; R. Janulis; J.-E. Solheim; Stefano Bernabei; Roy Ostensen; Terry D. Oswalt; I Bruni; R Gualandi; Alfio Bonanno; G Vauclair; M. D. Reed; Cathy W. S. Chen; E. M. Leibowitz; M. Paparó; A. Baran; S. Charpinet; N Dolez; S. D. Kawaler; D. W. Kurtz; P Moskalik; R Riddle; S. Zola

After the initial discoveries fifteen years ago, over 200 extrasolar planets have now been detected. Most of them orbit main-sequence stars similar to our Sun, although a few planets orbiting red giant stars have been recently found. When the hydrogen in their cores runs out, main-sequence stars undergo an expansion into red-giant stars. This expansion can modify the orbits of planets and can easily reach and engulf the inner planets. The same will happen to the planets of our Solar System in about five billion years and the fate of the Earth is matter of debate. Here we report the discovery of a planetary-mass body (Msini = 3.2MJupiter) orbiting the star V 391 Pegasi at a distance of about 1.7 astronomical units (au), with a period of 3.2 years. This star is on the extreme horizontal branch of the Hertzsprung–Russell diagram, burning helium in its core and pulsating. The maximum radius of the red-giant precursor of V 391 Pegasi may have reached 0.7 au, while the orbital distance of the planet during the stellar main-sequence phase is estimated to be about 1 au. This detection of a planet orbiting a post-red-giant star demonstrates that planets with orbital distances of less than 2 au can survive the red-giant expansion of their parent stars.


Astrophysical Journal Supplement Series | 2013

Asteroseismic Fundamental Properties of Solar-type Stars Observed by the NASA Kepler Mission

W. J. Chaplin; Sarbani Basu; Daniel Huber; Aldo M. Serenelli; Luca Casagrande; V. Silva Aguirre; Warrick H. Ball; O. L. Creevey; Laurent Gizon; R. Handberg; C. Karoff; R. Lutz; J. P. Marques; A. Miglio; D. Stello; Marian Doru Suran; D. Pricopi; T. S. Metcalfe; M. J. P. F. G. Monteiro; J. Molenda-Żakowicz; T. Appourchaux; J. Christensen-Dalsgaard; Y. Elsworth; R. A. García; G. Houdek; Hans Kjeldsen; Alfio Bonanno; T. L. Campante; E. Corsaro; P. Gaulme

We use asteroseismic data obtained by the NASA Kepler mission to estimate the fundamental properties of more than 500 main-sequence and sub-giant stars. Data obtained during the first 10 months of Kepler science operations were used for this work, when these solar-type targets were observed for one month each in survey mode. Stellar properties have been estimated using two global asteroseismic parameters and complementary photometric and spectroscopic data. Homogeneous sets of effective temperatures, T eff, were available for the entire ensemble from complementary photometry; spectroscopic estimates of T eff and [Fe/H] were available from a homogeneous analysis of ground-based data on a subset of 87 stars. We adopt a grid-based analysis, coupling six pipeline codes to 11 stellar evolutionary grids. Through use of these different grid-pipeline combinations we allow implicitly for the impact on the results of stellar model dependencies from commonly used grids, and differences in adopted pipeline methodologies. By using just two global parameters as the seismic inputs we are able to perform a homogenous analysis of all solar-type stars in the asteroseismic cohort, including many targets for which it would not be possible to provide robust estimates of individual oscillation frequencies (due to a combination of low signal-to-noise ratio and short dataset lengths). The median final quoted uncertainties from consolidation of the grid-based analyses are for the full ensemble (spectroscopic subset) approximately 10.8% (5.4%) in mass, 4.4% (2.2%) in radius, 0.017 dex (0.010 dex) in log g, and 4.3% (2.8%) in mean density. Around 36% (57%) of the stars have final age uncertainties smaller than 1 Gyr. These ages will be useful for ensemble studies, but should be treated carefully on a star-by-star basis. Future analyses using individual oscillation frequencies will offer significant improvements on up to 150 stars, in particular for estimates of the ages, where having the individual frequency data is most important.


The Astrophysical Journal | 2012

A Uniform Asteroseismic Analysis of 22 Solar-type Stars Observed by Kepler

S. Mathur; T. S. Metcalfe; M. Woitaszek; H. Bruntt; G. A. Verner; Jørgen Christensen-Dalsgaard; O. L. Creevey; G. Doğan; Sarbani Basu; C. Karoff; D. Stello; T. Appourchaux; T. L. Campante; W. J. Chaplin; R. A. García; Timothy R. Bedding; O. Benomar; Alfio Bonanno; S. Deheuvels; Y. Elsworth; P. Gaulme; Joyce Ann Guzik; R. Handberg; S. Hekker; W. Herzberg; M. J. P. F. G. Monteiro; L. Piau; P.-O. Quirion; C. Regulo; Mary Tork Roth

Asteroseismology with the Kepler space telescope is providing not only an improved characterization of exoplanets and their host stars, but also a new window on stellar structure and evolution for the large sample of solar-type stars in the field. We perform a uniform analysis of 22 of the brightest asteroseismic targets with the highest signal-to-noise ratio observed for 1 month each during the first year of the mission, and we quantify the precision and relative accuracy of asteroseismic determinations of the stellar radius, mass, and age that are possible using various methods. We present the properties of each star in the sample derived from an automated analysis of the individual oscillation frequencies and other observational constraints using the Asteroseismic Modeling Portal (AMP), and we compare them to the results of model-grid-based methods that fit the global oscillation properties. We find that fitting the individual frequencies typically yields asteroseismic radii and masses to ~1% precision, and ages to ~2.5% precision (respectively, 2, 5, and 8 times better than fitting the global oscillation properties). The absolute level of agreement between the results from different approaches is also encouraging, with model-grid-based methods yielding slightly smaller estimates of the radius and mass and slightly older values for the stellar age relative to AMP, which computes a large number of dedicated models for each star. The sample of targets for which this type of analysis is possible will grow as longer data sets are obtained during the remainder of the mission.


Monthly Notices of the Royal Astronomical Society | 2012

Asteroseismology of old open clusters with Kepler: direct estimate of the integrated red giant branch mass-loss in NGC 6791 and 6819

A. Miglio; K. Brogaard; D. Stello; W. J. Chaplin; F. D’Antona; Josefina Montalban; Sarbani Basu; A. Bressan; F. Grundahl; Marc H. Pinsonneault; Aldo M. Serenelli; Y. Elsworth; S. Hekker; T. Kallinger; B. Mosser; P. Ventura; Alfio Bonanno; A. Noels; V. Silva Aguirre; R. Szabó; Jie Li; Sean McCauliff; Christopher K. Middour; Hans Kjeldsen

Mass-loss of red giant branch (RGB) stars is still poorly determined, despite its crucial role in the chemical enrichment of galaxies. Thanks to the recent detection of solar-like oscillations in G–K giants in open clusters with Kepler, we can now directly determine stellar masses for a statistically significant sample of stars in the old open clusters NGC 6791 and 6819. The aim of this work is to constrain the integrated RGB mass-loss by comparing the average mass of stars in the red clump (RC) with that of stars in the low-luminosity portion of the RGB [i.e. stars with L L(RC)]. Stellar masses were determined by combining the available seismic parameters νmax and �ν with additional photometric constraints and with independent distance estimates. We measured the masses of 40 stars on the RGB and 19 in the RC of the old metal-rich cluster NGC 6791. We find that the difference between the average mass of RGB and RC stars is small, but significant [� M = 0.09 ± 0.03 (random) ±0.04 (systematic)


The Astrophysical Journal | 2010

A PRECISE ASTEROSEISMIC AGE AND RADIUS FOR THE EVOLVED SUN-LIKE STAR KIC 11026764

T. S. Metcalfe; M. J. P. F. G. Monteiro; M. J. Thompson; J. Molenda-Żakowicz; T. Appourchaux; W. J. Chaplin; G. Doğan; P. Eggenberger; Timothy R. Bedding; H. Bruntt; O. L. Creevey; P.-O. Quirion; D. Stello; Alfio Bonanno; V. Silva Aguirre; Sarbani Basu; Lisa Esch; Ning Gai; M. Di Mauro; Alexander G. Kosovichev; Irina N. Kitiashvili; J. C. Suárez; Andrés Moya; L. Piau; R. A. García; J. P. Marques; Antonio Frasca; K. Biazzo; S. G. Sousa; S. Dreizler

The primary science goal of the Kepler Mission is to provide a census of exoplanets in the solar neighborhood, including the identification and characterization of habitable Earth-like planets. The asteroseismic capabilities of the mission are being used to determine precise radii and ages for the target stars from their solar-like oscillations. Chaplin et al. published observations of three bright G-type stars, which were monitored during the first 33.5 days of science operations. One of these stars, the subgiant KIC 11026764, exhibits a characteristic pattern of oscillation frequencies suggesting that it has evolved significantly. We have derived asteroseismic estimates of the properties of KIC 11026764 from Kepler photometry combined with ground-based spectroscopic data. We present the results of detailed modeling for this star, employing a variety of independent codes and analyses that attempt to match the asteroseismic and spectroscopic constraints simultaneously. We determine both the radius and the age of KIC 11026764 with a precision near 1%, and an accuracy near 2% for the radius and 15% for the age. Continued observations of this star promise to reveal additional oscillation frequencies that will further improve the determination of its fundamental properties.


Physical Review D | 2006

Spacetime structure of an evaporating black hole in quantum gravity

Alfio Bonanno; Martin Reuter

The impact of the leading quantum gravity effects on the dynamics of the Hawking evaporation process of a black hole is investigated. Its spacetime structure is described by a renormalization group improved Vaidya metric. Its event horizon, apparent horizon, and timelike limit surface are obtained taking the scale dependence of Newtons constant into account. The emergence of a quantum ergosphere is discussed. The final state of the evaporation process is a cold, Planck size remnant.


The Astrophysical Journal | 2012

Asteroseismology of the Open Clusters NGC 6791, NGC 6811, and NGC 6819 from 19 Months of Kepler Photometry

E. Corsaro; D. Stello; Daniel Huber; Timothy R. Bedding; Alfio Bonanno; K. Brogaard; T. Kallinger; O. Benomar; T. R. White; Benoit Mosser; Sarbani Basu; W. J. Chaplin; Jørgen Christensen-Dalsgaard; Y. Elsworth; R. A. García; S. Hekker; Hans Kjeldsen; S. Mathur; Soren Meibom; Jennifer R. Hall; Khadeejah A. Ibrahim; Todd C. Klaus

We studied solar-like oscillations in 115 red giants in the three open clusters, NGC 6791, NGC 6811, and NGC 6819, based on photometric data covering more than 19 months with NASAs Kepler space telescope. We present the asteroseismic diagrams of the asymptotic parameters δν02, δν01, and epsilon, which show clear correlation with fundamental stellar parameters such as mass and radius. When the stellar populations from the clusters are compared, we see evidence for a difference in mass of the red giant branch stars and possibly a difference in structure of the red clump stars, from our measurements of the small separations δν02 and δν01. Ensemble echelle diagrams and upper limits to the linewidths of l = 0 modes as a function of Δν of the clusters NGC 6791 and NGC 6819 are also shown, together with the correlation between the l = 0 ridge width and the T eff of the stars. Lastly, we distinguish between red giant branch and red clump stars through the measurement of the period spacing of mixed dipole modes in 53 stars among all the three clusters to verify the stellar classification from the color-magnitude diagram. These seismic results also allow us to identify a number of special cases, including evolved blue stragglers and binaries, as well as stars in late He-core burning phases, which can be potentially interesting targets for detailed theoretical modeling.


The Astrophysical Journal | 2008

A MULTISITE CAMPAIGN TO MEASURE SOLAR-LIKE OSCILLATIONS IN PROCYON. I. OBSERVATIONS, DATA REDUCTION, AND SLOW VARIATIONS

T. Arentoft; Hans Kjeldsen; Timothy R. Bedding; Michael Bazot; Joergen Christensen-Dalsgaard; T. H. Dall; C. Karoff; Fabien Carrier; P. Eggenberger; Danuta Sosnowska; Robert A. Wittenmyer; Michael Endl; T. S. Metcalfe; S. Hekker; Sabine Reffert; R. Paul Butler; H. Bruntt; L. L. Kiss; S. J. O'Toole; Eiji Kambe; Hiroyasu Ando; Hideyuki Izumiura; Bun’ei Sato; M. Hartmann; A. Hatzes; F. Bouchy; Benoit Mosser; T. Appourchaux; C. Barban; G. Berthomieu

We have carried out a multisite campaign to measure oscillations in the F5 star Procyon A. We obtained high-precision velocity observations over more than three weeks with 11 telescopes, with almost continuous coverage for the central 10 days. This represents the most extensive campaign so far organized on any solar-type oscillator. We describe in detail the methods we used for processing and combining the data. These involved calculating weights for the velocity time series from the measurement uncertainties and adjusting them in order to minimize the noise level of the combined data. The time series of velocities for Procyon shows the clear signature of oscillations, with a plateau of excess power that is centered at 0.9 mHz and is broader than has been seen for other stars. The mean amplitude of the radial modes is 38:1 AE 1:3 cm s A1 (2.0 times solar), which is consistent with previous detections from the ground and by the WIRE spacecraft, and also with the upper limit set by the MOST spacecraft. The variation of the amplitude during the observing campaign allows us to estimate the mode lifetime to be 1:5 þ1:9 A0:8 days. We also find a slow variation in the radial velocity of Procyon, with good agreement between different telescopes. These variations are remarkably similar to those seen in the Sun, and we interpret them as being due to rotational modulation from active regions on the stellar surface. The variations appear to have a period of about 10 days, which presumably equals the stellar rotation period or, perhaps, half of it. The amount of power in these slow variations indicates that the fractional area of Procyon covered by active regions is slightly higher than for the Sun.


Astronomy and Astrophysics | 2002

Parity properties of an advection-dominated solar 2 -dynamo

Alfio Bonanno; D. Elstner; G. Belvedere

We have developed a high-precision code which solves the kinematic dynamo problem both for given rotation law and meridional flow in the case of a low eddy diffusivity of the order of

Collaboration


Dive into the Alfio Bonanno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. J. Chaplin

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. L. Campante

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

R. A. García

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge