Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alfonso Albacete is active.

Publication


Featured researches published by Alfonso Albacete.


Journal of Experimental Botany | 2008

Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants

Alfonso Albacete; Michel Edmond Ghanem; Cristina Martínez-Andújar; Manuel Acosta; José Sánchez-Bravo; Vicente Martínez; Stanley Lutts; Ian C. Dodd; Francisco Pérez-Alfocea

Following exposure to salinity, the root/shoot ratio is increased (an important adaptive response) due to the rapid inhibition of shoot growth (which limits plant productivity) while root growth is maintained. Both processes may be regulated by changes in plant hormone concentrations. Tomato plants (Solanum lycopersicum L. cv Moneymaker) were cultivated hydroponically for 3 weeks under high salinity (100 mM NaCl) and five major plant hormones (abscisic acid, ABA; the cytokinins zeatin, Z, and zeatin-riboside, ZR; the auxin indole-3-acetic acid, IAA; and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, ACC) were determined weekly in roots, xylem sap, and leaves. Salinity reduced shoot biomass by 50–60% and photosynthetic area by 20–25% both by decreasing leaf expansion and delaying leaf appearance, while root growth was less affected, thus increasing the root/shoot ratio. ABA and ACC concentrations strongly increased in roots, xylem sap, and leaves after 1 d (ABA) and 15 d (ACC) of salinization. By contrast, cytokinins and IAA were differentially affected in roots and shoots. Salinity dramatically decreased the Z+ZR content of the plant, and induced the conversion of ZR into Z, especially in the roots, which accounted for the relative increase of cytokinins in the roots compared to the leaf. IAA concentration was also strongly decreased in the leaves while it accumulated in the roots. Decreased cytokinin content and its transport from the root to the shoot were probably induced by the basipetal transport of auxin from the shoot to the root. The auxin/cytokinin ratio in the leaves and roots may explain both the salinity-induced decrease in shoot vigour (leaf growth and leaf number) and the shift in biomass allocation to the roots, in agreement with changes in the activity of the sink-related enzyme cell wall invertase.


Journal of Experimental Botany | 2008

Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.)

Michel Edmond Ghanem; Alfonso Albacete; Cristina Martínez-Andújar; Manuel Acosta; M. Remedios Romero-Aranda; Ian C. Dodd; Stanley Lutts; Francisco Pérez-Alfocea

Leaf senescence is one of the most limiting factors to plant productivity under salinity. Both the accumulation of specific toxic ions (e.g. Na+) and changes in leaf hormone relations are involved in the regulation of this process. Tomato plants (Solanum lycopersicum L. cv Moneymaker) were cultivated for 3 weeks under high salinity (100 mM NaCl) and leaf senescence-related parameters were studied during leaf development in relation to Na+ and K+ contents and changes in abscisic acid (ABA), cytokinins, the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and the auxin indole-3-acetic acid (IAA). Na+ accumulated to a similar extent in both leaves 4 and 5 (numbering from the base of the plant) and more quickly during the third week, while concurrently K+ contents sharply decreased. However, photosystem II efficiency, measured as the Fv/Fm ratio, decreased from the second week of salinization in leaf 4 but only at the end of the third week in the younger leaf 5. In the prematurely senescent leaf 4, ABA content increased linearly while IAA strongly decreased with salinization time. Although zeatin (Z) levels were scarcely affected by salinity, zeatin-riboside (ZR) and the total cytokinin content (Z+ZR) progressively decreased by 50% from the imposition of the stress. ACC was the only hormonal compound that increased in leaf tissue coincident with the onset of oxidative damage and the decline in chlorophyll fluorescence, and prior to massive Na+ accumulation. Indeed, (Z+ZR) and ACC contents and their ratio (Z+ZR/ACC) were the hormonal parameters best correlated with the onset and progression of leaf senescence. The influence of different hormonal changes on salt-induced leaf senescence is discussed.


Journal of Experimental Botany | 2011

Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants

Michel Edmond Ghanem; Alfonso Albacete; Ann C. Smigocki; Ivo Frébort; Hana Pospíšilová; Cristina Martínez-Andújar; Manuel Acosta; José Sánchez-Bravo; Stanley Lutts; Ian C. Dodd; Francisco Pérez-Alfocea

Salinity limits crop productivity, in part by decreasing shoot concentrations of the growth-promoting and senescence-delaying hormones cytokinins. Since constitutive cytokinin overproduction may have pleiotropic effects on plant development, two approaches assessed whether specific root-localized transgenic IPT (a key enzyme for cytokinin biosynthesis) gene expression could substantially improve tomato plant growth and yield under salinity: transient root IPT induction (HSP70::IPT) and grafting wild-type (WT) shoots onto a constitutive IPT-expressing rootstock (WT/35S::IPT). Transient root IPT induction increased root, xylem sap, and leaf bioactive cytokinin concentrations 2- to 3-fold without shoot IPT gene expression. Although IPT induction reduced root biomass (by 15%) in control (non-salinized) plants, in salinized plants (100 mM NaCl for 22 d), increased cytokinin concentrations delayed stomatal closure and leaf senescence and almost doubled shoot growth (compared with WT plants), with concomitant increases in the essential nutrient K+ (20%) and decreases in the toxic ion Na+ (by 30%) and abscisic acid (by 20–40%) concentrations in transpiring mature leaves. Similarly, WT/35S::IPT plants (scion/rootstock) grown with 75 mM NaCl for 90 d had higher fruit trans-zeatin concentrations (1.5- to 2-fold) and yielded 30% more than WT/non-transformed plants. Enhancing root cytokinin synthesis modified both shoot hormonal and ionic status, thus ameliorating salinity-induced decreases in growth and yield.


Plant Cell and Environment | 2009

Rootstock-mediated changes in xylem ionic and hormonal status are correlated with delayed leaf senescence, and increased leaf area and crop productivity in salinized tomato

Alfonso Albacete; Cristina Martínez-Andújar; Michel Edmond Ghanem; Manuel Acosta; José Sánchez-Bravo; Maria J. Asins; Jesús Cuartero; Stanley Lutts; Ian C. Dodd; Francisco Pérez-Alfocea

Tomato crop productivity under salinity can be improved by grafting cultivars onto salt-tolerant wild relatives, thus mediating the supply of root-derived ionic and hormonal factors that regulate leaf area and senescence. A tomato cultivar was grafted onto rootstocks from a population of recombinant inbred lines (RILs) derived from a Solanum lycopersicum x Solanum cheesmaniae cross and cultivated under moderate salinity (75 mM NaCl). Concentrations of Na(+), K(+) and several phytohormones [abscisic acid (ABA); the cytokinins (CKs) zeatin, Z; zeatin riboside, ZR; and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC)] were analysed in leaf xylem sap in graft combinations of contrasting vigour. Scion leaf area correlated with photosystem II (PSII) efficiency (F(v)/F(m)) and determined fruit productivity. Xylem K(+) (but not Na(+)), K(+)/Na(+), the active CK Z, the ratio with its storage form Z/ZR and especially the ratio between CKs and ACC (Z/ACC and Z + ZR/ACC) were positively loaded into the first principal component (PC) determining both leaf growth and PSII efficiency. In contrast, the ratio ACC/ABA was negatively correlated with leaf biomass. Although the underlying physiological mechanisms by which rootstocks mediate leaf area or chlorophyll fluorescence (and thus influence tomato salt tolerance) seem complex, a putative potassium-CK interaction involved in regulating both processes merits further attention.


Plant Cell and Environment | 2010

Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings

Gregorio Barba-Espín; Pedro Díaz-Vivancos; María José Clemente-Moreno; Alfonso Albacete; Lydia Faize; Mohamed Faize; Francisco Pérez-Alfocea; José Antonio Hernández

Hydrogen peroxide (H(2)O(2)) increased the germination percentage of pea seeds, as well as the growth of seedlings in a concentration-dependent manner. The effect of H(2)O(2) on seedling growth was removed by incubation with 10 microm ABA. The H(2)O(2)-pretreatment produced an increase in ascorbate peroxidase (APX), peroxidase (POX) and ascorbate oxidase (AAO). The increases in these ascorbate-oxidizing enzymes correlated with the increase in the growth of the pea seedlings as well as with the decrease in the redox state of ascorbate. Moreover, the increase in APX activity was due to increases in the transcript levels of cytosolic and stromal APX (cytAPX, stAPX). The proteomic analysis showed that H(2)O(2) induced proteins related to plant signalling and development, cell elongation and division, and cell cycle control. A strong correlation between the effect of H(2)O(2) on plant growth and the decreases in ABA and zeatin riboside (ZR) was observed. The results suggest an interaction among the redox state and plant hormones, orchestrated by H(2)O(2), in the induction of proteins related to plant signalling and development during the early growth of pea seedlings.


Functional Plant Biology | 2010

Hormonal regulation of source-sink relations to maintain crop productivity under salinity: a case study of root-to-shoot signalling in tomato

Francisco Pérez-Alfocea; Alfonso Albacete; Michel Edmond Ghanem; Ian C. Dodd

Salinity decreases crop yield first by reducing growth of assimilate-consuming sink organs and, second, by decreasing assimilate production in photosynthetically active source tissues. Although much work has focussed on controlling the accumulation of toxic ions (mainly Na+ and Cl-), the search for primary growth limiting factor(s) continues. The root, by sensing environmental constraints of the soil, may influence root-to-shoot signalling to control shoot growth and physiology, and ultimately agricultural productivity. Hormonal signals, such as cytokinins, ABA, the ethylene precursor 1-aminocyclopropane-1-carboxylic acid and the auxin indole-3-acetic acid may coordinate assimilate production and usage in competing sinks (biomass partitioning). Hormonal regulation of source-sink relations during the osmotic phase of salinity (independent of specific ions) affects whole-plant energy availability to prolong the maintenance of growth, root function and ion homeostasis, and could be critical to delay the accumulation of Na+ or any other ion to toxic levels. This viewpoint emphasises that simultaneously maintaining growth and delaying early leaf senescence is necessary to increase crop yield in salt-affected soils.


Biotechnology Advances | 2014

Hormonal and metabolic regulation of source-sink relations under salinity and drought: From plant survival to crop yield stability

Alfonso Albacete; Cristina Martínez-Andújar; Francisco Pérez-Alfocea

Securing food production for the growing population will require closing the gap between potential crop productivity under optimal conditions and the yield captured by farmers under a changing environment, which is termed agronomical stability. Drought and salinity are major environmental factors contributing to the yield gap ultimately by inducing premature senescence in the photosynthetic source tissues of the plant and by reducing the number and growth of the harvestable sink organs by affecting the transport and use of assimilates between and within them. However, the changes in source-sink relations induced by stress also include adaptive changes in the reallocation of photoassimilates that influence crop productivity, ranging from plant survival to yield stability. While the massive utilization of -omic technologies in model plants is discovering hundreds of genes with potential impacts in alleviating short-term applied drought and salinity stress (usually measured as plant survival), only in relatively few cases has an effect on crop yield stability been proven. However, achieving the former does not necessarily imply the latter. Plant survival only requires water status conservation and delayed leaf senescence (thus maintaining source activity) that is usually accompanied by growth inhibition. However, yield stability will additionally require the maintenance or increase in sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves and to delayed stress-induced leaf senescence. This review emphasizes the role of several metabolic and hormonal factors influencing not only the source strength, but especially the sink activity and their inter-relations, and their potential to improve yield stability under drought and salinity stresses.


Plant Cell Reports | 2011

Root-targeted biotechnology to mediate hormonal signalling and improve crop stress tolerance

Michel Edmond Ghanem; Imène Hichri; Ann C. Smigocki; Alfonso Albacete; Marie-Laure Fauconnier; Eugene Diatloff; Cristina Martínez-Andújar; Stanley Lutts; Ian C. Dodd; Francisco Pérez-Alfocea

Since plant root systems capture both water and nutrients essential for the formation of crop yield, there has been renewed biotechnological focus on root system improvement. Although water and nutrient uptake can be facilitated by membrane proteins known as aquaporins and nutrient transporters, respectively, there is a little evidence that root-localised overexpression of these proteins improves plant growth or stress tolerance. Recent work suggests that the major classes of phytohormones are involved not only in regulating aquaporin and nutrient transporter expression and activity, but also in sculpting root system architecture. Root-specific expression of plant and bacterial phytohormone-related genes, using either root-specific or root-inducible promoters or grafting non-transformed plants onto constitutive hormone producing rootstocks, has examined the role of root hormone production in mediating crop stress tolerance. Root-specific traits such as root system architecture, sensing of edaphic stress and root-to-shoot communication can be exploited to improve resource (water and nutrients) capture and plant development under resource-limited conditions. Thus, root system engineering provides new opportunities to maintain sustainable crop production under changing environmental conditions.


Phytochemistry | 2011

The interaction with arbuscular mycorrhizal fungi or Trichoderma harzianum alters the shoot hormonal profile in melon plants

Ainhoa Martínez-Medina; Antonio Roldán; Alfonso Albacete; José A Pascual

Arbuscular mycorrhizal fungi (AMF) and Trichoderma harzianum are known to affect plant growth and disease resistance through interaction with phytohormone synthesis or transport in the plant. Cross-talk between these microorganisms and their host plants normally occurs in nature and may affect plant resistance. Simultaneous quantification in the shoots of melon plants revealed significant changes in the levels of several hormones in response to inoculation with T. harzianum and two different AMF (Glomus intraradices and Glomus mosseae). Analysis of zeatin (Ze), indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylic acid (ACC), salicylic acid (SA), jasmonic acid (JA) and abscisic acid (ABA) in the shoot showed common and divergent responses of melon plants to G. intraradices and G. mosseae. T. harzianum effected systemic increases in Ze, IAA, ACC, SA, JA and ABA. The interaction of T. harzianum and the AMF with the plant produced a characteristic hormonal profile, which differed from that produced by inoculation with each microorganism singly, suggesting an attenuation of the plant response, related to the hormones SA, JA and ethylene. These results are discussed in relation to their involvement in biomass allocation and basal resistance against Fusarium wilt.


Journal of Plant Physiology | 2009

Response of nitrogen fixation in relation to nodule carbohydrate metabolism in Medicago ciliaris lines subjected to salt stress.

Imène Ben Salah; Alfonso Albacete; Cristina Martínez Andújar; Rabiaa Haouala; Nehla Labidi; Fethia Zribi; Vicente Martínez; Francisco Pérez-Alfocea; Chedly Abdelly

The effect of salt stress on nitrogen fixation, in relation to sucrose transport towards nodules and other sink organs and the potential of sucrose breakdown by nodules, was investigated in two lines of Medicago ciliaris. Under salt stress conditions, the two lines showed a decrease of total biomass production, but TNC 1.8 was less affected by salt than TNC 11.9. The chlorophyll content was not changed in TNC 1.8, in contrast to TNC 11.9. Shoot, root, and nodule biomass were also affected in the two lines, but TNC 1.8 exhibited the higher potentialities of biomass production of these organs. Nitrogen fixation also decreased in the two lines, and was more sensitive to salt than growth parameters. TNC 1.8 consistently exhibited the higher values of nitrogen fixation. Unlike nodules, leaves of both lines were well supplied in nutrients with some exceptions. Specifically, the calcium content decreased in the sensitive line leaves, and the nodule magnesium content was not changed in either line. The tolerant line accumulated more sodium in its leaves. The two lines did not show any differences in the nodule sodium content. Sucrose allocation towards nodules was affected by salt in the two lines, but this constraint did not seem to affect the repartition of sucrose between sink organs. Salt stress induced perturbations in nodule sucrolytic activities in the two lines. It inhibited sucrose synthase, but the inhibition was more marked in TNC 11.9; alkaline/neutral activity was not altered in TNC 1.8, whereas it decreased more than half in TNC 11.9. Thus, the relative tolerance of TNC 1.8 to salt stress could be attributed to a better use of these photoassimilates by nodules and a better supply of bacteroids in malate. The hypothesis of a competition for sucrose between nodules and other sink organs under salt stress could not be verified.

Collaboration


Dive into the Alfonso Albacete's collaboration.

Top Co-Authors

Avatar

Francisco Pérez-Alfocea

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Cristina Martínez-Andújar

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michel Edmond Ghanem

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Stanley Lutts

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Roitsch

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Cantero-Navarro

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Michel Edmond Ghanem

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge